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Abstract

By the term power grasp in the phisiology of human manipulation, a particular type of

hold is indicated, that uses not only the �ngertips but also the inner phalanges of the hand

for constraining the object. In robotics, this concept can be extended to robotic systems

composed of multiple actuated limbs (such as arms, �ngers, or legs) cooperating in the

manipulation of an object. Power grasp (also indicated by \enveloping" or \whole{limb")

operations that exploit any part of the limbs to contact the object are considered in this

paper. In particular, the problem of decomposing the system of contact forces exerted

between the robot limbs and the object, in order to apply a desired resultant force on the

object (and/or to resist external disturbances) is studied. The peculiarity of whole{limb

systems is that contacts occurring on links with limited mobility, such as the inner links

of a robot arm or hand, and even on �xed links (a robot chest or palm), are possible.

Although the potential usefulness of whole{limb manipulation is demonstrated by biomor-

phic examples as well as by practically implemented robotic devices, present methods for

grasp analysis cannot directly deal with these type of grasping mechanisms. We propose a

modi�cation of known force decomposition analysis that generalizes to enveloping grasp-

ing. The results of the proposed technique provide a basis for the realization of real{time

optimal control of whole{limb manipulation.
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1 Introduction

To a�ord the ever increasing level of power and 
exibility demanded by sophisticated

applications, robots are envisioned to evolve from the simple one{arm con�guration most

common today, to multiple{limb systems coordinated towards task accomplishment. As

of today, several examples of such systems are already successfully operated, such as pairs

of robot arms that cooperate in carrying a heavy or bulky object, robot hands that use

several �ngers for dextrous manipulation tasks, and deambulating vehicles that use their

legs to negotiate di�cult terrains and balance themselves actively. A rather extensive

literature about the analysis and control of coordinated robot systems includes the study

of their kinematics, statics, and dynamics. Amongst the main contributions, one can be

referred to the work of Nakano et al. [20], Mason [15], and Uchiyama and Dauchez [24] for

cooperating multiple arms; Salisbury [21], Kerr and Roth [11], Li, Hsu and Sastry [13],

and Nakamura, Nagai and Yoshikawa [19] for dextrous hands; and to the work of McGhee

and Orin [17], Waldron [26], and Klein and Kittivatcharapong [12] for legged vehicles.

Equipping multiple manipulation systems with the ability to use all of their links for

contacting and manipulating objects is one way of further enhancing their capabilities

and applicability potentials. As often occurs in robotics, this idea comes directly from

the observation of human and animal examples. The arms and chest of a man carrying

large objects, his hand used to �rmly grasp an object between the phalanges of the �ngers

and the palm (\power grasping"), or the limbs of an ape when climbing a tree, provide

us with the evidence of the usefulness of such \whole{limb" manipulation in nature.

Trinkle [23] studied planning techniques for enveloping, frictionless grasping. Robotic

devices intended to exploit the whole{limb manipulation idea have been pioneered by

the MIT WAM (Whole Arm Manipulator) project, reported �rstly by Salisbury [22].

A dextrous hand using all its parts (including the inner phalanges and the palm) to

achieve robust power grasps and high manipulability has been proposed by Vassura and

Bicchi [25]; Mirza and Orin [18] described a multiple arm manipulation system (DIGITS),

and discussed the improved robustness of power grasping.

A characteristic of whole{limb manipulating systems is their use of links that have

only limited mobility: for instance, the palm of a hand has no mobility at all. Thus,

such systems are intrinsically defective, i.e., they possess fewer degrees{of{freedom than

necessary to achieve arbitrary con�gurations in their operational space. It should be

noted that defectivity is not a peculiarity of whole{limb systems alone. Rather, it is

very common to consider systems with defective kinematics in practice. For instance,

most industrial grippers are simple one{ or two{degree{of{freedom devices, that cannot

control arbitrary displacements of the tips of their �ngers. Also, coordination of two arms

of the common SCARA type is a defective kinematics problem (see [2]). Finally, non{
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defective manipulation systems are a particular case of defective ones, and therefore it is

desirable to obtain results in the latter, more general setting, that will be applicable to

conventional robots too.

Defectivity of enveloping manipulation systems poses new problems in the analysis

of kinematics, statics and dynamics, that cannot be dealt with by standard methods [3].

This paper is devoted to the investigation of a particular aspect of the analysis of defective

manipulation systems, i.e. the problem of force decomposition. The basic questions we are

concerned with are: a) when external forces act upon the manipulated object disturbing its

equilibrium, how do they distribute between the contacts, and b) how can we modify the

contact forces so as to achieve desirable values in spite of external disturbances. Note that

the problem of controlling the distribution of contact forces in a manipulation system such

as a hand, a pair of cooperating robot arms, or a legged vehicle, is of crucial importance

for the realization of most basic control tasks, such as coordinated motion, internal force

control, grasp stabilization etc. The scope of this paper is limited to giving a quasi{static

analysis of force distribution, that concerns steady{state solutions to the above problems.

The quasi{static approach allows a very simple understanding of the geometry of the

problem, and results are obtained that provide a basis for building suitable control laws

to implement speci�c grasping tasks (note that dynamics do not typically play a major

role in the control of grasping, where motions are usually slow). The dynamic analysis of

this problems is not feasible in general without resorting to linearization of the complex

robot{object model. In a linearized setting, results of the analysis of dynamic structural

properties reported in [4] show that what is called \active internal forces" in the context

of this paper, can be described as \functionally controllable outputs at steady{state" in

a properly de�ned dynamic system.

2 Background

The problem of controlling contact forces in a multiple manipulation system such as

a hand, a pair of cooperating robot arms, or a legged vehicle, has been traditionally

considered in the assumption that every single �nger (arm, or leg: in the following, we

will refer to \hands" generically) has full mobility in its task space. This assumption

greatly simpli�es the problem, by allowing to separately deal with the analysis of the

distribution of grasp force among the contacts, and with the control of the joint torques

that realize desirable contact forces. In this section we brie
y review the background on

grasp analysis techniques, in order to highlight what new problems are posed by defective

systems.

Let for instance an object be grasped by means of n contacts and let the components
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of contact forces and moments on the object form a vector1 t 2 IRt. Consider the task

of resisting an external force f 2 IR3 and moment m 2 IR3 applied upon the object (the

task of steering an object along a desired trajectory is equivalent once the inertial load

corresponding to the speci�ed acceleration and velocity pro�le is determined). The force

and moment balance equation for the object can be written in matrix notation as

w = �Gt; (1)

where w = (fTmT )T 2 IR6 is the so{called load \wrench", and G 2 IR6�t is usually

termed as the \grasp matrix", or \grip transform". This equation has a solution in the

hypothesis that w belongs to the range space of G, (i.e., w 2 R(G)). In the following we

assume, unless otherwise stated, that R(G) = IR6, so that the existence of a solution to

(1) for any w is guaranteed. In general, (1) has more unknowns than equations, so that

the solution is not unique. The general solution can be written as

t = �GR w +Ax; (2)

where GR is a right{inverse of the grasp matrix, and A 2 IRt�h is a matrix whose columns

form a basis of the nullspace of G (noted with N (G)). The coe�cient vector x 2 IRh

parameterizes the homogeneous part of the solution (2): for any choice of x, a vector

of contact forces results that equilibrates the desired load. Most known grasp optimiza-

tion techniques (see e.g. [19]), can be formulated by de�ning a cost function V (x) and

constraint functions gi(x) as

Find x̂ such that

V (x̂;w) is minimum;

gi(x̂) � 0.

The cost and constraint functions usually are designed so as to realize the goals of avoid-

ing contact slippage and minimizing consumption of power in the joint actuators. Stan-

dard non{linear programming algorithms are available to �nd x̂. The corresponding

t̂ = �GRw + Ax̂ is the optimal force distribution among contacts with respect to the

criterion adopted in the design of V . Finally, t̂ is applied by the �ngers under some type

of force control technique.

It should be noted that this last sentence tacitly relies upon a fundamental underlying

assumption, i.e. that any arbitrary distribution of contact forces t can be actively con-

trolled by the robot. To discuss this assumption, consider the linear relationship between

the contact forces on the �ngers and the vector � 2 IRq of joint actuator torques:

� = JT t: (3)

1Notation will be more precisely de�ned in section 3
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where the matrix J 2 IRt�q is the \Jacobian" of the manipulation system. A robot system

with q > rank (J) = t is a \redundant" system, while if q � rank (J) < t, the robot system

is \defective" with respect to its task space dimension. For a redundant manipulator, a

many{to{one mapping t(�) : IRq ! IRt can always be established which is onto IRt. For

a non{redundant, non{defective (minimal) manipulator with q = rank (J) = t, a one{to{

one and onto mapping can be established between IRq and IRt. In both cases, arbitrary

t's can be realized by suitably regulating joint torques.

However, solution 2 can not in general be applied to defective manipulating systems,

since there is no guarantee that the optimal contact forces can actually be realized by the

robot. In other words, complete (output function) controllability of internal forces may

not be achieved in those cases. While the controllability concept can be investigated in

a dynamical model of grasping, in this paper we undertake a quasi{static analysis meant

to answer the question, \what internal forces at equilibrium are modi�able at will, when

inputs are joint torques?".

Consider for example the grasp of the object depicted in �g.1{a by means of three

contacts placed in c1, c2, and c3. Intuitively, there are three possible independent com-

binations of contact forces giving homogeneous solutions to the grasp equations, namely

those pushing or pulling the object along the edges of the so{called \grasp triangle"

(�g.1{b). Any pair of these \internal" forces or their combinations may be used, for in-

stance, to squeeze the object and decrease the danger of slippage. However, if the grasp

is to be realized by the simple single{joint gripper shown in �g.1{c, it appears that some

con�guration of internal forces may not be feasible (for instance, opposing forces in the

direction c2 � �c3 as shown in the uppermost part of �g.1{b). In order to solve the

force decomposition problem for general manipulation systems, a more accurate analysis

is therefore necessary, which takes into account the kinematics and the deformability of

the manipulation system.

3 Quasi{Static Model of Whole{Limb Manipulation

The model of the cooperating manipulation system we assume is comprised of an arbitrary

number of robot \�ngers" (i.e., simple chains of links connected through revolute or

prismatic joints), and of an object, which is in contact with some or all of the links (see

�g.2). We assume that, for the i{th of the n contacts, the location of the contact point

ci 2 IR3 is known, by either planning or sensing. According to standard conventions, we

consider a �xed \base" reference frame B, and local reference frames Ej, �xed to the j{th

robot link (see �g.2): the position of the origin of Ej is placed on the j{th joint axis,

and is designed in base frame by the 3{vector oj. The z{axis of Ej is aligned with the
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Figure 1: A simple example of grasp with a kinematically defective device.

j{th joint axis, and has unit vector zj in base frame; the x{axis of Ej is aligned with the

line joining oj with oj+1. Frames associated with �xed and extremal links can be chosen

with some degree of arbitrarity. All vectors are expressed in base frame, unless explicitly

noted. Let the contact force and torque exerted on the object at the i{th contact be

pi 2 IR3 and mi 2 IR3, respectively, and put ~t = (pT1 ; : : : ;p
T
n ;m

T
1 ; : : : ;m

T
n )

T 2 IR6n.

Balance equation for the object can be written in matrix form as

w = � ~G~t; (4)

where

~G =

0
@ I3 I3 � � � I3 O3�3n

S(c1) S(c2) � � � S(cn) I3 I3 � � � I3

1
A ;

and S(ci) is the cross{product matrix for ci (i.e. the skew{symmetric matrix such that

S(ci)pi = ci � pi). Analogously, force balance equations for the manipulator joints can

be written as

� = ~JT ~t; (5)
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Figure 2: Local and base reference frames in whole{limb manipulation.

where ~J is a 6n�q matrix whose elements are functions of the robot geometric parameters

and joint angles:

~JT =

0
BBBBB@

D1;1 D2;1 � � � Dn;1 L1;1 L2;1 � � � Ln;1

D1;2 D2;2 � � � Dn;2 L1;2 L2;2 � � � Ln;2

� � � � � � � � � � � � � � � � � � � � � � � �
D1;q D2;q � � � Dn;q L1;q L2;q � � � Ln;q

1
CCCCCA
; (6)

and the 1� 3 blocks Di;j and Li;j are de�ned as

Di;j =

8>><
>>:

O1�3 if the i{th contact force does not a�ect the j{th joint;

zTj for prismatic j{th joint;

zTj S(ci � oj) for revolute i{th joint;

Li;j =

8>><
>>:

O1�3 if the i{th contact torque does not a�ect the j{th joint;

O1�3 for prismatic j{th joint;

zTj for revolute j{th joint;

To incorporate contact constraints in the model, relative displacements between the object

and the links at the contact points must be considered. Therefore, we introduce n reference

frames oCi �xed w.r.t. the object and centered in ci; and n reference frames mCi, each

�xed w.r.t. the link that touches the object in ci, and centered in ci. Corresponding to a

small displacement �r and rotation �� of the object w.r.t. the base frame (summarized



3 QUASI{STATIC MODEL OF WHOLE{LIMB MANIPULATION 7

in the \twist" vector �u = (�rT ;��T )T ), frames oCi undergo a displacement �oci and

rotation �o�i whose relationship with �u can be derived by the virtual work principle as

�ox = ~GT �u; (7)

�ox = (�ocT1 ; : : : ;�
ocTn ;�

o�T1 ; : : : ;�
o�Tn )

T :

Analogous is the relationship between small displacements of the joints �q and the dis-

placements �mci and rotations m��i of the contact frames mCi:

�mx = ~J �q; (8)

�mx = (�mcT1 ; : : : ;�
mcTn ;�

m�T1 ; : : : ;�
m�Tn )

T :

Contact constraints impose that certain components of the relative displacements

�ox��mx are selectively opposed by reaction forces, depending upon the type of contact.

Several types of contact models can be used to describe the interaction between the links

and the object, among which the most useful are probably the point{contact{with{friction

(also called \hard{�nger") model, the \soft{�nger" model, and the complete{constraint

(or \very{soft{�nger") model. For a description of these models, see e.g. [21]. Contact

constraints can be expressed in terms of a suitable selection matrix H: assuming that the

contacts are numbered according to their type, so that the variables relative to complete{

constraint contacts have indices from 1 to l, those relative to soft{�nger contacts from

l+1 to l+m, and those relative to hard{�nger contacts from l+m+1 to l+m+ r = n,

the kinematic constraint for a rigid{body manipulation system can be expressed as

H(�mx��ox) = 0; (9)

H =

0
BBBBB@

I3(n+l) O3(n+l)�3(n�l)

Om�3(n+l)

nTl+1 � � � 0 0 0

� � � � � � � � �
0 0 0 � � � nTl+m

Om�3r

1
CCCCCA
;

where ni is the unit normal vector to the contacting surfaces at the i{th contact point.

The selection matrix H has 6n columns and 3n+ 3l +m = t rows.

All relationship considered so far are valid for a rigid{body model of the robot system.

However, the force distribution problem for general systems is underdetermined. To

solve the indeterminacy, the rigid body model is inadequate, and a more accurate model,

taking into account the elastic elements that are involved in the system, has therefore to

be considered2. This can be conceptually done by introducing a set of \virtual springs"

2since in this paper only quasi{static grasps are considered, dynamic e�ects such as viscous damping,

are disregarded in the model
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interposed between the links and the object at the contact points, such that the elastic

relationship between the relevant components of the relative displacements �ox � �mx

and the corresponding components of contact forces can be written as

t = KH(�mx��ox) + to; (10)

where to is the contact force in the reference con�guration �mx = �ox = 0. Eq.(10)

establishes a relationship between certain components of contact forces and relative dis-

placements at the contacts, according to di�erent types of contact. In (10), t 2 IRt di�ers

from ~t = HT t 2 IR6n in that only the components of contact force and torque which are

relevant to contact description are considered. The sti�ness matrixK 2 IRt�t incorporates

the structural elasticity of the object and of the �ngers, and the sti�ness of joint servos

if position controllers are used [16]. Denoting with Cs the t � t structural compliance

matrix (due e.g. to the 
exibility of links and mechanical transmission, or to soft gripping

surfaces), and with Cq the q � q the diagonal matrix whose element in position i; i is the

inverse of the steady{state gain of the i{th joint position servo, we have

K = (Cs + JCqJ
T )�1: (11)

As a consequence of its physical nature, K can be assumed non{singular. A detailed and

comprehensive study on the evaluation and the realization of desirable sti�ness matrices

with articulated hands has been presented by Cutkosky and Kao [6]. It should be noted

that, sinceK includes the sti�ness of the joint position controllers, the displacement vector

�q must be interpreted as the change in the input reference for position controllers.

In view of the above de�nitions, the matrices G and J introduced in (1) and (3), are

evaluated as

G = ~GHT ;

J = H~J;

and the quasi{static model of the manipulation system to be studied can be summarized

by the following equations:

w = �Gt; (12)

� = JT t; (13)

t = K(J�q�GT�u) + to: (14)

4 The Particular Solution

The particular solution tp = �GRw of the force distribution problem (1) is not unique,

since G in general admits in�nitely many right inverses. However, we expect a unique

solution to the following
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Force distribution problem. Assume that an object, at equilibrium under an external load

wo and contact forces to, is subject to an additional load w, while all other parameters

are kept constant. Determine the values of contact forces at the new equilibrium.

Proposition 1 The solution to the force distribution problem is unique, and is given by

t = GR
Kw + to; (15)

where GR
K = KGT (GKGT )�1.

Proof. Let �q and �u be the displacements of the joints and of the object at the new

equilibrium reached under wo + w, w.r.t. the original equilibrium con�guration. Since

the reference position of joint controllers are kept constant, �q = 0. Substituting (14) in

(12), we have

t = �KGT�u + to; (16)

w +wo = GKGT�u�Gto; (17)

Hence, recalling that G is assumed full row rank and K is invertible,

t = �KGT (GKGT )�1w + to = GR
Kw + to:2 (18)

It can be observed that GR
K is the K{weighted pseudoinverse of G, providing the par-

ticular solution that minimizes the elastic energy 1=2(�mx��ox)TK(�mx��ox) (see

e.g. [9], [10]).

Among the in�nite possible numerical right{inverses ofG, GR
K appears to be phisically

well motivated. The importance of phisically sound bases in the choice of numerical

algorithms have been shown in several recent papers in the robotics literature, e.g. [7],

[8]. In view of such remarks, it is of interest to show the following

Proposition 2 The particular solution (15) is invariant under linear non{singular trans-

formations of the variables.

Proof. Suppose that the representation of the variables is changed (due to changes of

reference frame or measurement units, for instance) as

�w = Tww; ��u = Tu�u;
�t = Ttt; ��x = Tx�x:

Note that Tw and Tt may be completely arbitrary non{singular matrices. For the sake

of preserving the physical consistency of the representations, however, constraints must
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be imposed on the choice of Tu and Tx: in fact, the requirement that wT�u = �wT��u

entails TT
u = T�1w , and TT

x = T�1t . The transformed form of (12) and (16) can be

obtained as

�w = � �G�t; �t = � �K �GT��u;

where
�G = TwGT

�1
t ; �K = TtKT

�1
x :

Eq.(18) can be rewritten in terms of the transformed variables (assuming to = 0 for

simplicity) as
�t = � �GR

K �w = � �K �GT ( �G �K �GT )�1 �w;

It can be easily veri�ed by substitution that

�t = � �GR
K �w = �TtG

R
KT

�1
w �w;

i.e., the particular solution (18) evaluated after a variable transformation is equal to the

transformation of the solution obtained prior to transformation.2

Note that the invariancy property of (18) is not shared by other commonly used

particular solutions. For instance, by applying the straightforward pseudo{inverse solution

tp = G+w; G+ = GT (GGT )�1; (19)

to a transformed representation of the problem, we obtain

�tp = T�Tt GTTT
w (TwGT

�1
t T�Tt GTTT

w )
�1 �w = T�Tt GT (GTT

x TxG
T )�1T�1w �w; (20)

which di�ers from �tp = TtG
+T�1w �w whenever the transformation Tx (and hence Tt) is

not orthogonal.

5 The homogeneous solution

Internal forces, i.e. self{balanced contact forces that have no e�ect on the global motion

of the manipulated object but signi�cantly a�ect the grasp stability, have been identi�ed

with homogeneous solutions of (12). In mathematical terms, internal forces are elements

of the subspace Fh 2 IRt = N (G), and, by de�nition of A, Fh 2 IRt = R(A). However,

as discussed above for general manipulation systems, not all homogeneous solutions may

be actively controlled by using joint variables as inputs. Internal contact forces that

are not actively realizable through joint control may still be present in a system, due to

its initial conditions | e.g., they may have been set by prestressing elastic elements in

the manipulation system. In this section we propose a decomposition of the homogeneous

subspace in a subspace Fhr of active, internal contact forces and a subspace Fho of passive

(preload), internal contact forces.
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5.1 Active Internal Forces

Consider an equilibrium con�guration of the manipulation system under an external load

wo, and denote with qo and with to the joint positions and the contact forces in such

reference con�guration, respectively. By modifying the joint reference position by �q,

the equilibrium con�guration of the object, still subject to wo, is changed by �u. Corre-

spondingly, contact forces are t = to +�t. From Gt = wo follows that �t 2 N (G). We

de�ne active those internal contact forces �t that correspond to controllable modi�cations

of the system con�guration, and let Fhr 2 IRt denote the set of all active �t's.

In order to characterize the set Fhr, we will make use of the principle of virtual

work (P.V.W.), in the form that applies to mechanical systems constrained by bilateral,

frictionless and/or rolling constraints, which is recalled here:

Principle of Virtual Work. A mechanical system is in equilibrium un-

der external forces and constraints if and only if the work of external forces

corresponding to any virtual displacement of the system is zero.

Note that the P.V.W. can be applied to the general system modeled in (12) { (14) insofar

as there is no slippage nor discontinuity of contacts between the object and the links.

This condition can be guaranteed by applying a suitable grasp force control policy, such

as discussed in the references cited above (see also below section 6).

Proposition 3 The set of active internal forces Fhr is a linear subspace of IRt, i.e., every

active internal force can be written as the product of a basis matrix E times an arbitrary

coe�cient vector y of suitable dimension.

Proof. Consider a system in the equilibrium con�guration described by wo, qo, to, and

let �u be a displacement of the object which is compatible with all the constraints imposed

by contacts with the robot links (i.e., �u is a virtual displacement of the object). Applying

the P.V.W. and (12), we have immediately

wT
o �u = tTo G

T �u = 0; 8�u:

By imposing joint displacements �q, the equilibrium con�guration is perturbed. A new

equilibrium under the same external forcewo will be reached on condition that the P.V.W.

is satis�ed:

wT
o �u = (to +�t)TGT �u = �tTGT �u = 0; 8�u:

From (14), �t = K(J�q�GT�u). After substitution, the P.V.W. condition is

�qT JTKTGT �u = �uTGKTG�u 8�u
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which implies

GKJ�q = GKGT�u; (21)

and hence

�u = (GKGT )�1GKJ�q (22)

�t = K(J�q�GT (GKGT )�1GKJ�q) =

= (I�GR
KG)KJ�q (23)

Therefore, all active internal forces can be expressed as

~t = Ey; (24)

where the columns of the t� e matrix E form a basis of the range of (I�GR
KG)KJ. 2

The vector y 2 IRe is comprised of e free variables among which the ŷ corresponding to

an optimal grasp force distribution can be chosen by means of suitable cost functions and

optimization routines. Note that in general e � h, i.e. active internal forces are \fewer"

than internal forces, corresponding to intuition. Also, e � q, i.e. no more independent

active internal forces can be controlled than are joints in the system.

From a computational point of view, the algorithm sketched in the proof of Proposition

3 to evaluate the desired basis matrix E is not optimal, since it entails the explicit cal-

culation of the right{inverse GR
K. A more e�cient algorithm, which also provides further

insight in the problem, can be derived by rewriting (21) as

G (KJ �q �KGT�u) = 0;

or, equivalently, as

Ax = KJ�q�KGT�u:

This equation can be recast in block matrix form as

h
A �KJ KGT

i
0
BB@

x

�q

�u

1
CCA = 0: (25)

Put Q =
h
A �KJ KGT

i
2 IRt�(h+q+6), and let B 2 IR(h+q+6)�b be a matrix whose

columns span the nullspace of Q (whose nullity is b). Finally, partition B as B =h
BT

1 BT
2 BT

3

iT
, where B1 2 IRh�b, B2 2 IRq�b, and B3 2 IR6�b. The subspace under

investigation is thus obtained as

Fhr = R(AB1):
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and the matrix E is obtained by using only the independent columns of AB1. This

method, though seemingly complex, is numerically more e�cient and robust than the

previously presented, since it avoids any matrix inversion. As a consequence, the latter

algorithm can be applied to cases when G is not full row rank. Further, by using (25)

it can be easily calculated which joints displacements must be commanded if a desired

active internal force �t̂ = Eŷ is to be applied:

�q̂ = B2(AB1)
+Eŷ (26)

The equilibrium position of the object is correspondingly displaced by

�û = B3(AB1)
+Eŷ:

5.2 Preload internal forces

As mentioned above, in general manipulation systems there may be internal contact forces

that can not be actively controlled by means of joint displacements. Therefore, these

forces will remain constantly equal to their initial value (or evolve freely, if considered in

a dynamic setting). In a mechanical jig, such forces can be set once and for all as a preload

condition, for instance for preventing slippage. Although in robotic systems it may be

unlikely to encounter such preload forces, their analysis is an interesting completion to

the study above.

Let Fho 2 IRt denote the subspace of internal, passive (preload) contact forces, and

let the subspace of contact forces that the manipulation system can exert on the object

with zero joint torques be

Fo = ft 2 IRtj JT t = 0g � ft 2 IRtj t = Cz2; 8z2 2 IRkg;

where C 2 IRt�k is a matrix whose column form a basis of the nullspace of JT (whose

nullity is k). The preload force subspace is thus given by

Fho = Fh \ Fo = R(A) \R(C):

Proposition 4 The set of passive internal forces Fho is a linear subspace of IRt, i.e.,

every passive internal force can be written as the product of a basis matrix P times an

arbitrary coe�cient vector z of suitable dimension.

Proof. Since the desired set is the intersection of the range space of matrices A and C, it

is a linear subspace. To evaluate a basis, consider the equation Az1 = Cz2, or, in matrix

form,

[A �C]

0
@ z1

z2

1
A = 0: (27)
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Let Qo = [A �C] 2 IRt�(h+k), and let Bo 2 IR(h+k)�d be a matrix whose columns span

the nullspace of Qo (whose nullity is d). Finally, partition Bo as Bo =
h
BT

o1 B
T
o2

iT
, where

Bo1 2 IRh�d, and Bo2 2 IRk�b. The desired subspace is thus obtained as

Fho = R(ABo1):

Therefore, all possible preload forces can be expressed as

t = Pz; (28)

where the columns of the t� p matrix P form a basis of the range of ABo1, and z 2 IRp

parameterizes the preload subspace. 2

Interestingly enough, the preload subspace description is not a�ected by the system sti�-

ness matrix, K. From such observation, it clearly follows that any attempt at deriving a

basis of either the active or passive internal subspaces by using the concept of \orthogonal

complement" to basis vectors of the other subspace, is misconceived. However, from the

de�nition of the particular, active and preload homogeneous force subspaces follows

R(P)�R(E) = N (G) (29)

R(P)�R(E)�R(GR
K) = IRt: (30)

6 Summary of Results

In view of the above discussion and results, a three{term description of contact force

distribution in general manipulation systems can be given as

t = �GR
Kw +Ey +Pz: (31)

The �rst term in the right{hand side is a particular solution of the grasp balance equation.

Using the right{inverse of the grasp matrix de�ned in (18), this term corresponds to the

contact forces exerted on the object due to the external load w, when internal forces

are zero. This is an invariant, physically meaningful choice for the particular solution

of the grasp balance equation. The second term in the right{hand side of (31) is a

parameterized homogeneous solution corresponding to active internal forces. Optimal

grasp force distributions can be found through minimizing a cost function with respect

to y. The third term in the right{hand side of (31) is a �xed homogeneous solution

corresponding to contact forces that are preloaded at the beginning of the grasp operation

(in most practical cases, it can be assumed z = 0).
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Consider for instance the problem of �nding the optimal distribution of contact forces

in the grasp of an object subject to external load wo, with regard to the minimization of

power consumption in the actuators of the �nger joints. A cost function can be written

in terms of the joint torques and of a positive{de�nite weight matrix W as

V = �TW�:

Note that � = JT (�GR
Kwo +Ey +Pz), and that the gradient of V with respect to y is

@V

@y
= ET JWJT (�GR

Kwo +Ey +Pz);

If no constraints are in order for contact forces, the optimal grasp is obtained for

ŷ = �(ET JWJTE)�1ET JCJTGR
Kwo;

In general, if unilateral and friction contact constraints are considered, this solution may

result unfeasible. However, if the constraints are linearized in the form Ct � b (see e.g.

Cheng and Orin [5]), the problem can be recast as a standard quadratic programming

problem:

Find ŷ such that


T y + yT �y is minimum;

Ĉy � b̂,

where � = ET JWJTE, 
 = 2(ET JWJT (Pz�GR
K), Ĉ = CE, and b̂ = b+C(GR

Kw �
Pz). As is well known, quadratic programming is a particularly tractable nonlinear pro-

gramming problem, for which convergence to the solution in a �nite number of itera-

tions can be guaranteed. An e�cient algorithm for this problem is, for instance, the

Convex{Simplex{Method{Conjugate{Direction (CSM{CD) described by Zangwill [27].

Nakamura, Nagai, and Yoshikawa [19] solve an analogous problem without constraint

linearization. A globally asymptotically convergent algorithm for the optimal choice of

internal forces, with second{order rate of convergence, is proposed in [1].

From a practical viewpoint, calculation of GR
K may be computationally too demand-

ing to be incorporated in a real{time grasp control algorithm. Actually, any particular

solution of (1) can be used as a starting point for an iterative optimization algorithm,

and computationally e�cient right{inverses (such as the f1g{inverse [14], will be in gen-

eral preferable to both GR
K and G+. The interest of (18) is more in the insight it gives,

e.g. in choosing the optimal joint servo gains or in estimating poorly known structural

compliances of the manipulation system.
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7 Examples

In this section we will illustrate the above discussed algorithms and show how the ma-

nipulator kinematics and elasticity properties play an important role in the analysis of

the grasp when general manipulation systems are considered. In order to do that, we will

consider the grasp of the object depicted in �g.1{a by means of four di�erent manipulation

systems.

Let the contact points coordinates be c1 = (0 0 2a)T ; c2 = (0 2a 3a)T ; c3 = (0 2a a)T ,

and the corresponding unit normal vectors be n1 = (0 1 0)T ; n2 = (0 �
p
3
2
� 1

2
)T ; and

n3 = (0 �
p
3
2

1
2
)T . All contacts are modeled as \soft{�nger". Accordingly, the dimension

of composite contact force/torque vectors t is t = 12 and the grasp matrix results

G =

0
BBBBBBBBBBB@

1 0 0 1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 1 0 0 0

0 �2a 0 0 �3a 2a 0 �a 2a 0 0 0

2a 0 0 3a 0 0 a 0 0 1 �
p
3
2

�
p
3
2

0 0 0 �2a 0 0 �2a 0 0 0 �1
2

1
2

1
CCCCCCCCCCCA

:

A basis of the null{space of G is provided by the columns of the matrix A:

A =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 �2 0 0

2 2 0 0 0 0

1 �1 0 0 0 0

0 0 0 1 1 0

�2 0 0 0 0 0

�1 0 1 0 0 0

0 0 0 1 �1 0

0 �2 0 0 0 0

0 1 �1 0 0 0

0 0 0 0 0
p
3

0 0 0 �4a 2p
3
a 1

0 0 0 4a 2p
3
a 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

Note that the �rst three columns correspond to contact forces taken two at a time and

opposing each other along the edges of the grasp triangle. The presence of friction torques

at the soft-�nger contacts produces the last three columns of A. The sti�ness matrix K

will be evaluated in each case according to (11). In our example, Cs is assumed diagonal,

with Csj;j = 0:05 mm/N for linear springs (1 � j � 9), and Csj;j = 0:01 deg./Nmm for

rotational springs (10 � j � 12). On the other hand, assuming that the q joints are con-
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trolled with q independent position servos with steady{state gain kp = 100:0 Nmm/deg.,

we have Cq =
1
kp
Iq.

7.1 Simple gripper

As a �rst case study, consider the simple one{joint gripper of �g.1{c. The joint axis

is z1 = (1 0 0)T , and its origin o1 = (0 0 0)T . The jacobian matrix in this case is

JT = (0 � 2a 0 0 0 0 0 0 0 0 0 0). With the sti�ness parameters above listed, the

resulting sti�ness matrix is

K =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

20 0 0 0 0 0 0 0 0 0 0 0

0 1
0:05+0:04a2

0 0 0 0 0 0 0 0 0 0

0 0 20 0 0 0 0 0 0 0 0 0

0 0 0 20 0 0 0 0 0 0 0 0

0 0 0 0 20 0 0 0 0 0 0 0

0 0 0 0 0 20 0 0 0 0 0 0

0 0 0 0 0 0 20 0 0 0 0 0

0 0 0 0 0 0 0 20 0 0 0 0

0 0 0 0 0 0 0 0 20 0 0 0

0 0 0 0 0 0 0 0 0 100 0 0

0 0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 0 0 100

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

As is intuitively clear, the subspace of active internal forces is one{dimensional in this

example, and the preload force subspace is 5{dimensional:

E =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

2

0

0

�1
0

0

�1
0

0

0

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; P =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�2 0 0 0 0

0 0 0 0 0

0 �2 0 0 0

1 0
p
2 0 0

0 2 0 0 0

0 1 0 1 0

1 0 �p2 0 0

0 �2 0 0 0

0 1 0 �1 0

0 0 � 2p
3
a 0

p
3

�4a 0 a 0 1

4a 0 a 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

Recall that each column represents a combination of contact forces ti and normal

torques mini at the contact points, arranged as (tT1 tT2 tT3 m1 m2 m3)
T . The only
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Figure 3: Active and preload internal forces for the grasp of �g.1

set of internal forces that can be modi�ed at will is represented in �g.3{a. Fig.3{b and

�g.3{c represent two of the basic combinations of passive internal forces (columns 2 and

4 of P, respectively), that cannot be modi�ed by joint control. To �x some ideas, let

a = 50mm, and assume an external force of 1N in the y direction is applied at the point

of contact points. The corresponding wrench is w = (0 1N 0 � 100Nmm 0 0)T . In

the following, we will use coherently Newtons and millimeters as force and length units,

and avoid explicit notation. The load distribution among contact forces is evaluated as

tp = �GR
Kw = (0 -0.0002 0 0 -0.4999 0 0 -0.4999 0 0 0 0)T . This result shows that the

joint compliance greatly reduces the load share taken by the �rst contact. Also, note that

the contact force at c1 is directed outside of the object. If adhesive contact forces are

not allowed, as usually is the case, the pure particular solution yields an unstable grasp

(non{compressive contact forces). However, by adding an appropriate active internal

force, it is possible to avoid this problem. For instance, by choosing y = 0:01, we have

from (31) t = tp + Ey = (0 0:02 0 0 -0.51 0 0 -0.51 0 0 0 0)T . To implement such

correction, the position setpoints of the robot joint must be changed by �q = �0:02rad
(see (26)). Note that this apparently large displacement is almost completely absorbed

by servo compliance, and only minor changes in joint angle will actually occur (namely,

�q�CqJ
TEy = �1:510�5rad). Correspondingly, the equilibrium position of the object

is slightly displaced by �u = (0 0:5 10�3 0 0 0 0)T .

7.2 Two{joint hand

Consider the two{joint hand of �g.4{a, which employs the two links and the palm to grasp

the object of �g.1{a. Joint axes are z1 = z2 = (1 0 0)T , and the origins are o1 = (0 0 0)T ,
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Figure 4: Three di�erent manipulators grasping the same object.

and o2 = (0 0 4a)T . The jacobian and sti�ness matrices are in this case (for a = 50mm):

J =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0

0 0

0 0

0 0

0 50

0 100

0 0

�50 0

100 0

0 0

0 0

0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

;K =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

20 0 0 0 0 0 0 0 0 0 0 0

0 20 0 0 0 0 0 0 0 0 0 0

0 0 20 0 0 0 0 0 0 0 0 0

0 0 0 20 0 0 0 0 0 0 0 0

0 0 0 0 16 �8 0 0 0 0 0 0

0 0 0 0 �8 4 0 0 0 0 0 0

0 0 0 0 0 0 20 0 0 0 0 0

0 0 0 0 0 0 0 16 8 0 0 0

0 0 0 0 0 0 0 8 4 0 0 0

0 0 0 0 0 0 0 0 0 100 0 0

0 0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 0 0 100

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

The subspace of active, internal forces and preload contact forces are 2{ and 4{dimensional,
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respectively, and their basis matrices are

E =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0

�2 0

0 �2
0 0

1 2

6 1

0 0

1 �2
�6 1

0 0

0 0

0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; P =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�2 0 0 0

0 4 0 0

0 0 0 0

1 0
p
2 0

0 �2 0 0

0 1 0 0

1 0 �p2 0

0 �2 0 0

0 �1 0 0

0 0 � 2p
3

p
3

�4 0 1 1

4 0 1 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

The particular solution corresponding to an external load as in the case above is tp = (0

-0.38 0 0 -0.31 0:1 0 -0.31 -0.1 0 0 0)T . Again, the �rst contact force is adhesive, and

must be corrected by setting, for instance, y = (�0:3 0)T . From (31), t = tp + Ey =

(0 0:22 0 0 -0.61 -1.7 0 -0.61 1:7 0 0 0)T . The position setpoints of the robot joints must be

changed by �q = (1:95�1:95)rad, and the equilibrium position of the object is displaced

by �u = (0 -0.03 0 0 0 0)T .

7.3 Three{joint limb.

Consider now the three{joint limb depicted in �g.4{b, where z1 = z2 = z3 = (1 0 0)T ,

and o1 = (0 0 0)T , o2 = (0 0 3a)T , and o3 = (0 3a 3a)T . The jacobian and sti�ness

matrices are in this case (for a = 50mm):

J =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0

�100 0 0

0 0 0

0 0 0

�150 0 0

100 100 0

0 0 0

�50 100 100

100 100 �50

0 0 0

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

;
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K =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

20 0 0 0 0 0 0 0 0 0 0 0

0 14 0 0 �8:8 1:9 0 �0:63 �1:3 0 0 0

0 0 20 0 0 0 0 0 0 0 0 0

0 0 0 20 0 0 0 0 0 0 0 0

0 �8:8 0 0 6:8 2:8 0 �0:94 �1:9 0 0 0

0 1:9 0 0 2:8 12 0 �4:1 �8:2 0 0 0

0 0 0 0 0 0 20 0 0 0 0 0

0 �0:63 0 0 �0:94 �4:1 0 1:4 2:7 0 0 0

0 �1:3 0 0 �1:9 �8:2 0 2:7 5:5 0 0 0

0 0 0 0 0 0 0 0 0 100 0 0

0 0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 0 0 100

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

The dimension of the active and preload force subspaces are not changed in this case:

E =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0

�2 0

0 5

0 0

1 �5
0 1

0 0

1 5

0 �6
0 0

0 0

0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; P =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�2 0 0 0

0 0 0 0

0 1 0 0

1 0
p
2 0

0 �1 0 0

0 �3 0 0

1 0 �p2 0

0 1 0 0

0 2 0 0

0 0 � 2p
3
a
p
3

�4a 0 a 1

4a 0 a 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

The particular solution corresponding to the external force of 1N applied at the point of

contact points is tp = (0 -0.998 0:0006 0 -0.0016 -0.0001 0 -0.0004 -0.0007 0 0 0). To avoid

breaking the �rst contact, a correction can be choosen as y = (�0:6 0)T . Correspondingly,
t = tp + Ey = (0 0:20 0 0 -0.6 0 0 -0.6 0 0 0 0)T . The position setpoints of the robot

joints must be changed by �q = (0 � 0:6 � 0:6)rad, and the equilibrium position of the

object is displaced by �u = (0 -0.24 0 0:001 0 0)T .

7.4 Three{joint limb and chest.

If the object of �g.1{a is grasped by a three{joint limb and the chest of a robot such

as depicted in �g.4{c, a three{dimensional subspace of realizable, internal forces can be

obtained. In fact, assuming in this example z1 = z2 = z3 = (1 0 0)T , o1 = (0 0 3a)T ,
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o2 = (0 3a 3a)T , and o3 = (0 3a a)T , the jacobian and sti�ness matrices result (for

a = 50mm):

J =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

100 0 0

0 0 0

100 100 0

100 �50 �50

0 0 0

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

;

K =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

20 0 0 0 0 0 0 0 0 0 0 0

0 20 0 0 0 0 0 0 0 0 0 0

0 0 20 0 0 0 0 0 0 0 0 0

0 0 0 20 0 0 0 0 0 0 0 0

0 0 0 0 20 0 0 0 0 0 0 0

0 0 0 0 0 0:11 0 �0:04 �0:06 0 0 0

0 0 0 0 0 0 20 0 0 0 0 0

0 0 0 0 0 �0:04 0 0:02 0:02 0 0 0

0 0 0 0 0 �0:06 0 0:02 0:04 0 0 0

0 0 0 0 0 0 0 0 0 100 0 0

0 0 0 0 0 0 0 0 0 0 100 0

0 0 0 0 0 0 0 0 0 0 0 100

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

;
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Correspondingly, the E and P basis matrices result

E =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0

�2 0 0

0 1 0

0 0 0

1 �1 0

0 0 1

0 0 0

1 1 0

0 �1 �1
0 0 0

0 0 0

0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; P =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�2 0 0

0 0 0

0 0 0

1
p
2 0

0 0 0

0 0 0

1 �p2 0

0 0 0

0 0 0

0 � 2p
3
a
p
3

�4a a 1

4a a 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

The particular solution corresponding to the above discussed external force is in this case

tp = (0 -0.998 0:001 0 -0.002 -0.001 0 0 0 0 0 0)T . Again, the �rst contact force is adhesive,

and can be corrected by choosing e.g. y = (�3 2 � 3)T . From (31), t = tp+Ey = (0 5 2

0 -5 -3 0 -1 1 0 0 0)T . Accordingly, the position setpoints of the robot joints are changed

by �q = (�3 � 1:5 � 0:5)rad, and the equilibrium position of the object is displaced by

�u = (0 -1.4 -0.1 -0.01 0 0)T .

7.5 Kerr and Roth's example

In an important early paper on grasp optimization, Kerr and Roth [11] discuss an example

grasp by two �ngers (�g. 5). They use linear programming techniques to choose the

optimal combination of forces in the nullspace of the grasp matrix, in our notation:

A =

2
666666666666666664

0 0

0 0p
2=2 0

0 0

0 0p
2=2 0

0
p
2=2

0
p
2=2

3
777777777777777775

:

However, the manipulation system is apparently defective, and only the span of the �rst

column of A results actively modi�able through joint torque commands. Therefore, the

optimization search should have been performed inside that span (corresponding to that of
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Figure 5: Kerr and Roth's [12] example no.1.

matrix E by the method above), to avoid possibly unfeasible results; moreover, reduction

of the dimensionality of the search space is of great advantage for computational issues.

8 Conclusion

In this paper the problem of force decomposition in general manipulation systems, in-

cluding multiple whole{limb cooperating manipulators, has been considered. An attempt

is made at explaining the geometric structure of the vector space of contact forces and

torques that are mutually exerted between the manipulation system links and the ma-

nipulated object. Three fundamental subspaces are described, corresponding to: contact

forces that can be caused by external forces acting on the object, R(KGT ), see (18);

internal contact forces directly realizable by joint commands, R(E); and internal contact

forces that can only be set by preloading, R(P). Algorithms for the determination of a

vector basis for such subspaces are also provided. These results, particularly those con-

cerning the description of active internal forces, are necessary requisites to the realization

of optimal grasp control algorithms with general manipulation systems.
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