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Abstract

Muscle fatigue is a complex phenomenon that results in a reduction of the maximal voluntary force. Measuring muscle fatigue
can be a challenging task that may involve the use of intramuscular electrodes (i.e., intramuscular electromyography (EMG)) or
complex acquisition techniques. In this study, we propose an alternative non-invasive methodology for muscle fatigue detection
relying on the analysis of two Autonomous Nervous System (ANS) correlates, i.e., the electrodermal activity (EDA) and heart rate
variability (HRV) series. Based on standard surface EMG analysis, we divided 32 healthy subjects performing isometric biceps
contraction into two groups: a fatigued group and a non-fatigued group.
EDA signals were analyzed using the recently proposed cvxEDA model in order to derive phasic and tonic components and extract
effective features to study ANS dynamics. Furthermore, HRV series were processed to derive several features defined in the time
and frequency domains able to estimate the cardiovascular autonomic regulation. A statistical comparison between the fatigued
and the non-fatigued groups was performed for each ANS feature, and two EDA features, i.e., the tonic variability and the phasic
response rate, showed significant differences. Moreover, a pattern recognition procedure was applied to the combined EDA-HRV
feature-set to automatically discern between fatigued and non-fatigued subjects. The proposed SVM classifier, following a recursive
feature elimination stage, exhibited a maximal balanced accuracy of 83.33%. Our results demonstrate that muscle fatigue could be
identified in a non-invasive fashion through effective EDA and HRV processing.
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1. INTRODUCTION

Fatigue is a complex human condition that reflects several
physiological and psychological states [1, 2]. Rather than be-
ing generated by a single cause [3], it depends on many cen-
tral and peripheral phenomena [4] and can affect different sites
of the neuromuscular system including the motor cortex, the
moto-neuron, the neuromuscular transmission, the excitation-
contraction coupling, or the contraction mechanisms [5]. Ac-
cording to the anatomical site (or sites), it is possible to dis-
tinguish among central fatigue, fatigue of the neuromuscular
junction, or muscle fatigue [5].

Muscle fatigue is defined as a reduction in the ability of a
muscle to generate force or power induced by a constant stim-
ulation [6, 4]. Its quantitative measure is challenging, also be-
cause the exact moment of muscle exhaustion is unknown [4].

By monitoring the decrease of the maximal force or power
produced over time, several indices of muscular fatigue have
been proposed in the literature. Particularly, previous studies
showed that muscle fatigue influences the surface electromyo-
graphic signal (sEMG) in a complex way [7], with a progres-
sive decrease in the mean or median frequencies of the power
spectral density function during isometric voluntary sustained
contractions [8, 9, 10, 11, 12]. To this end, the analysis in the
time-frequency domain of sEMG can be considered as a robust

alternative to the gold standard approach of the intramuscular
EMG [13, 14, 15]. To monitor fatigue during a physical ex-
ercise, especially in ecological scenarios, the wearability and
comfort of the measuring system is extremely relevant. How-
ever, effective wireless wearable sEMG systems currently in the
market are usually expensive and present several limitations re-
garding comfort, encumbrance, and intrusiveness.

Several studies showed that autonomic nervous system
(ANS) dynamics is directly involved in voluntary muscle con-
tractions [16, 17]. In detail, during such contractions both the
sympathetic and parasympathetic branches of the ANS are ac-
tivated through the brainstem activity [18, 16, 19], as well as,
through chemo-, mechano- and baroreceptor afferents [20, 21].
The effects of ANS modulation during fatigue are evident when
referring to cardiovascular dynamics, as heartbeat, respiration
rate, and blood pressure significantly changes during intense
exercise [22, 23, 24, 23, 25]. Specifically, increased heart rate
(HR), as well as oxygen uptake and EMG activity were ob-
served during prolonged exercises [26, 27, 28, 29, 55, 31]. In
this context, Heart rate variability (HRV) series, being modu-
lated by sympathetic and parasympathetic interplay, was also
investigated [32, 33, 34], with the hypothesis of a sympathetic
withdrawal or a vagal tone restoration occurring after maximal
exercise [35]. Due to methodological limitations, previous in-
vestigations observed significant changes in HRV spectra after
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fatiguing training sessions [36, 37, 33, 38, 39], whereas few
studies monitored heartbeat dynamics during the fatiguing task
[40, 41, 42].

To our knowledge, other markers of ANS dynamics, such
as electrodermal activity (EDA) [43, 44, 45, 46], has not been
investigated in the frame of muscle fatigue induced by physical
exercise. EDA is a widely used physiological signal modulated
by attentional, affective, and motivational cognitive processes.
EDA is directly controlled by the sympathetic branch of the
ANS [47] and is used as an effective biomarker of emotional
responsiveness, stress, and mental fatigue [48, 49, 50, 47].

Therefore, we hypothesize that combined HRV and EDA
analyses can be profitably used to improve on the state of the
art automatic recognition of the muscle fatigue condition from
ANS. Contrary to the intramuscular EMG, both HRV and EDA
are physiological series that can be monitored through non-
invasive sensors (i.e., surface electrodes).

Accordingly, here we propose to assess muscle fatigue only
using ANS measurements acquired from wearable devices, pos-
sibly opening novel applications for unobtrusive and ecologi-
cal muscular fatigue monitoring. Specifically, we investigate
whether parameters extracted from EDA and HRV during iso-
metric exercise are able to statistically discriminate between a
group of fatigued subjects and a control group (non-fatigue).
Moreover, a pattern recognition system is propoed to automati-
cally discern data from the two groups at a single-subject level.

2. METHODS

2.1. Subject Recruitment and Experimental protocol
Thirty-two young right-handed adults (mean age 29.25 ±

3.38 (SD) - 16 males) participated in the study. Before per-
forming the experiment, all subjects signed an informed con-
sent to take part in the study. All experimental procedures were
approved by the local ethical committee. None of the partici-
pants had a history of neurological disorders, musculoskeletal
injuries, or cardiovascular diseases, or assumed antidepressants
or medications that could have affected the ANS functioning
and hence the experimental outcomes.

Subjects were required to perform two isometric force pro-
duction tasks with their right arm: a maximum voluntary iso-
metric contraction (MVC) and a submaximal fatiguing contrac-
tion. More in detail, the experimental paradigm consisted of
three stages:

• each subject sat on a comfortable chair, with the elbow
completely extended along the body, and a strap fixed on
the wrist and connected to a load cell (i.e., dynamome-
ter) [55]. To measure the MVC, the elbow flexion range
of motion had to be performed completely, starting from
a full extension to avoid/minimize possible compensation
by the shoulders and trunk. We instructed subjects to in-
crease the isometric force exerted by the right arm, from
baseline to their maximum, and to maintain this maximum
for 5s. All subjects were verbally encouraged to maximize
their force production while their MVC was measured by
the dynamometer [56, 3]. Subjects performed three MVC

trials and the average of the three measures was used as
the reference value to compute the target force for the sub-
maximal fatiguing contraction. Subjects were given a rest
period of 2 min after each MVC trial to minimize fatigue
and ensure the correct exertion of the maximum force at
each trial.

• After the MVC measurement phase, we acquired EMG,
EDA and ECG data as it follows: the EMG activity mea-
sured over the biceps brachii (short and long head), up-
per trapezius, deltoideus, triceps brachii, brachioradialis,
flexor carpi radialis, and extensor digitorum communis
was recorded using surface electrodes. Surface sensors
were placed in single differential mode with two contact
electrodes of 10.0 x 1.0 mm placed in parallel with an in-
terelectrode distance of 10.0 mm. This is considered the
optimum interelectrode spacing for reducing crosstalk in
sEM signals that contain baseline noise [57]. The two
contact electrodes are assembled in a case of 41 x 20 x
5 mm. This kind of electrode is incorporated in the com-
mercial equipment 16-bit A/D Bagnoli Delsys EMG Sys-
tems. Following the SENIAM guidelines, the sensors were
placed along the longitudinal midline of each muscle (with
the long side parallel to the muscle fibers) to minimize
crosstalk [58]. To determine the precise location, origin,
insertion, and function of the muscle under study as well
as any nearby muscles that may produce undesirable sig-
nals, the placement procedure was preformed by a clin-
ical expert in anatomy. In addition, to ensure that high-
quality signals are recorded, once the sensors location was
determined, subjects were asked to contract the muscle.
Then, the sensor location was being slightly shifted until
the detected signal was maximized. In this study, we fo-
cused only on the short-head biceps brachii (which assists
with adduction), since the experimental task (equivalent
to a biceps curl) allowed to maximize biceps contraction,
Concerning ECG and EDA sensors, standard disposable
Ag/AgCl electrodes were used. ECG was recorded from a
modified lead II configuration, which places the right elec-
trode below the sternum and the left one on the left side of
the torso below the ribcage. As suggested in [59], EDA
electrodes were placed over the volar surface of the distal
phalanges of the index and middle fingers of the left hand
(non-dominant). A 24-bit A/D Biopac MP35 was used to
acquire ECG and EDA signals. After the electrode mon-
tage, subjects were invited to comfortably sit with eyes
open and their upper limbs along the body in a silent room
for a 5 min resting state, while the EDA, ECG and sEMG
were recorded with a sampling frequency of 2000 Hz.

• Finally, each subject performed a submaximal fatiguing
task with the elbow flexed at 90 degree, the arm along the
body (see Figure 1), and a strap fixed on the right wrist
and connected to a load equal to 40% of their MVC. Then,
subjects were asked to maintain it as long as they could.

To avoid confounding factors possibly affecting the recorded
signals, we controlled for temperature and humidity level inside
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Figure 1: Experimental protocol scheme

the room. Throughout the experiment, subjects comfortably sat
on a chair and were instructed to avoid speaking and strong
changes in the respiration activity (such as breath hold or hy-
perventilation). Moreover, none of the participants were taking
antidepressants or medications known to affect the ANS func-
tioning or have had a history of neurological disorders, muscu-
loskeletal injuries, or cardiovascular diseases. Before and after
the experiment, each subject was asked to fill out psychometric
tests to assess their stress level (State-Trait Anxiety Inventory
test [51]), emotional state (Positive Affect and Negative Affect
Scales [52]) and physical fatigue level through ad-hoc questions
selected from the Multidimensional Fatigue [53] Inventory and
Fatigue Assessment Scale tests [54]. The two groups of subjects
did not show any statistical significant differences between the
scores of all psychometric tests.

2.2. sEMG Analysis
Surface EMG analysis was used as reference analysis to dis-

tinguish fatigued subjects from non-fatigued ones [5]. The
EMG signals of the biceps and other monitored muscles were
filtered with a Infinite Impulse Response (IIR) comb notch fil-
ter (50 Hz). Then a zero-phase Butterworth IIR band-pass filter
was used to retain frequencies between 30 and 500 Hz. EMG
spectral analysis was performed using the Discrete Fast Fourier
Transform estimating the power spectra in a 1s moving Ham-
ming window. In fact, it was proven that in case of isometric,
constant force, fatiguing contractions, the EMG signal might be
considered stationary for epoch durations of about 1−2 seconds
[5]. There was no overlap between consecutive time windows,
according to previous findings [60]. For each 1-s time window,
we calculated the median frequency value to obtain the trend
of the Median Frequency (MNF) along the time. Subjects who
showed a decrease in MNF over time were considered as fa-
tigued [5, 60].

2.3. EDA Processing using cvxEDA algorithm
EDA refers to changes in the electrical properties of the skin

that are directly related to the eccrine sweat gland activity.
The EDA is measured by monitoring skin conductance (SC)
changes over specific body sites where the concentration of the
eccrine glands is high. In this study the EDA was acquired on
the finger phalanxes of the non-dominant hand [47]. Due to
the direct control of the sweat glands activity performed by the
sympathetic branch of the ANS (and in particular the sudomo-
tor nerve), the EDA analysis is considered one of the best ways

to monitor the sudomotor nerve activity (SMNA) and, conse-
quently, ANS activity.

It is possible to decompose the EDA signals into two com-
ponents, phasic and tonic, which differ for their time scales and
their relationships with the external stimuli [61, 47]. The tonic
component represents the conductance level (SCL) of the EDA
signal, i.e., the slow-varying baseline level, whereas the phasic
component refers to faster variations directly related to an ex-
ogenous stimulus. A single response to a stimulus is generally
called skin conductance response (SCR).

The whole EDA signal results from the sum of these com-
ponents, that provide relevant and non-redundant information
about ANS dynamics. We extracted this information by
decomposing the EDA signal through an previously validated
approach: the cvxEDA model [61] (available online at:
http://www.mathworks.com/matlabcentral/fileexchange/53326-
cvxeda).

Here we briefly summarize the main methodological steps
behind the cvxEDA model for EDA dynamics (details can be
found in [61]). The model assumes EDA as the output of a
linear time-invariant system to a sparse non-negative driver sig-
nal. CvxEDA describes the EDA signal (y) as a sum of three
terms: a phasic component (r), a smooth tonic component (t),
and an additive independent and identically distributed zero-
average Gaussian noise term (ε): y = r + t + ε.

The tonic component is modeled by the sum of an offset term,
a linear trend, and a smoothed cubic spline that are in accor-
dance with physiological properties: t = B` + Cd. Where B
is a matrix of cubic B-spline basis functions, ` is the vector of
spline coefficients, C is a N×2 matrix with Ci,1 = 1, Ci,2 = i/N
(with N= length of the EDA signal), and d is a 2×1 vector con-
taining the offset and slope coefficients for the linear trend.
The phasic component results from the convolution between a
signal that represents the SMNA, p, and an impulse response
shaped like a biexponential Bateman function [63]:

h(τ) = (e−
τ
τ0 − e−

τ
τ1 ) u(τ), (1)

with τ1 = 2,τ0 = 0.7. This function results form a bi-
compartmental pharmacokinetic model representing the diffu-
sion of the sweat through the gland ducts, and can be repre-
sented, after its discrete-time approximation, in the matrix form
of an autoregressive moving average model A−1M. Where: M
is a tridiagonal matrix with elements Mi,i = Mi,i−2 = 1, Mi,i−1 =

2, 3 ≤ i ≤ N; and A is a tridiagonal matrix with elements
Ai,i = (τ−1

1 δ+2)(τ−1
0 δ+2)/(τ−1

1 δ2−τ−1
0 δ2), Ai,i−1 = (2 τ−1

1 τ−1
0 δ2−

8)/(τ−1
1 δ2−τ−1

0 δ2), Ai,i−2 = (τ−1
1 δ−2)(τ−1

0 δ−2)/(τ−1
1 δ2−τ−1

0 δ2),
with sampling time interval δ.

Using an auxiliary variable q such that q = A−1 p and
r = M q, the final observation model results as

y = Mq + B` + Cd + ε. (2)

Given the EDA model (2), we aim at identifying the tonic
component (t) and the maximum a posteriori (MAP) neural
driver SMNA (p), parametrized by [q, `, d], for the observed
EDA signal (y). CvxEDA rewrites the MAP problem as a con-
strained minimization QP convex problem:
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minimize
1
2
‖Mq + B` + Cd − y‖22+α ‖Aq‖1+

γ

2
‖`‖22

subj. to Aq ≥ 0.
(3)

Where α and γ are parameters that depend on specific prior
distributions (see [61]) and control the strength of the penalty
(i.e., sparsity and smoothness) for the phasic and tonic com-
ponents, respectively. CvxEDA finds the optimal [q, `, d] and
consequently the optimal tonic and phasic components that in-
clude the prior knowledge about the spiking sparse nature and
nonnegativity of the neural signal representing the SMNA (p)
and the smoothness of the tonic SCL.

Table 1: List of features extracted from phasic and tonic EDA.
Feature Description
SCRfreq frequency of significant SCR wrw

(i.e., exceeded the threshold of .5 uS [47, 62])
AUCphasic Area under the curve of phasic component wrw (µS s)
MaxPeak maximum amplitude of significant peaks of

SMNA signal wrw 1(µS )
MeanAMP Mean value of the SMNA signal wrw (µS )
STDphasic Standard deviation of SMNA signal wrw (µS
STDtonic Standard deviation of tonic signal wrw (µS

MeanTonic Mean value of the tonic component wrw (µS )
EDAsymp Index of sympathetic nervous system activity (µS 2).

PSD of the EDA signal within the 0.045-0.25 Hz band.
wrw= within response window (i.e., 5 secs before the end of

the task)

We then extracted several features from both the tonic and
phasic signal as summarized in Table 1. In addition to the stan-
dard statistical features in the time domain, we also computed
the power spectral density (PSD) of the EDA signal in the fre-
quency band 0.045-0.25 Hz (i.e. EDAsymp), which has been
demonstrated to be a reliable parameter for the assessment of
the sympathetic nervous system activity [63].

2.4. ECG processing

ECG signals were band-pass filtered (0.50-40 Hz) to reduce
noise and motion artifacts. The QRS-waveforms and each rel-
ative R-peaks were detected using the Pan-Tompkins method
[64]. All time series were visually inspected to ensure that no
beat was discarded. After accounting for the missed R-wave
beats, the R-R interval time series (RR) were computed. More-
over, the non-evenly sampled RR interval series were interpo-
lated (4 Hz) by means of a cubic spline functions, i.e. the HRV
time series. A set of features in the time and frequency domain
was estimated from every RR and HRV series. More in detail,
we computed the mean (meanRR) and the standard deviation
(stdRR) of the RR intervals within a time window, the square
root of the mean squared differences of successive RR intervals
(RMSSD), the number of interval differences of successive RR
intervals greater than 50 ms divided by the total number of RR
intervals (pNN50).

In the frequency domain, we defined some features for the as-
sessment of sympathetic and parasympathetic activities. More

specifically, we estimated the power spectral density of HRV
signals applying the Welch’s periodogram method with Black-
man window and 50% of overlapped segments. The fast Fourier
transform was computed for each windowed segment and the
power spectra of the segments were averaged. We then calcu-
lated the power within the two main spectral bands: the Low
Frequency band (LF, from 0.04Hz to 0.15Hz), and the High
Frequency band (HF, from 0.15Hz to 0.4Hz). The HF com-
ponents of HRV are known to be influenced by the parasym-
pathetic system. In contrast, the low-frequency components
(LF, 0.045-0.15 Hz) are influenced by both the sympathetic
and parasympathetic nervous systems. Moreover, we calculated
also the ratio between the LF and the HF power was computed
in order to derive information about the sympatho-vagal bal-
ance (although this has not been fully accepted as an accurate
measure of the ANS balance since the LF band also contains
parasympathetic dynamics) [66].

In addition, also some geometrical indexes were extracted,
such as the HRV triangular index (HRVtri), and the triangu-
lar interpolation of RR interval histogram (TINN). HRVtri was
computed following the standard 1/128 seconds bin width, as
recommended in [65].

All HRV features are listed with their relative brief descrip-
tion in Table 2.

Table 2: List of features extracted from HRV signals.
Feature Description
meanRR mean value of RR intervals [s]
stdRR standard deviation of RR intervals [s]
pNN50 Number of successive RR interval pairs >50 ms

divided by the total number of RR intervals [%]
RMSSD Square root of the mean squared differences between

successive RR intervals [s]
LF Absolute powers of LF band [s2]

LFnu LF/(LF+HF)
HF Absolute powers of HF band [s2]

HFnu HF/(LF+HF)
LF/HF Mean value of the tonic component wrw (µS )
HRVtri The integral of the RR interval histogram divided

by the height of the histogram
TINN Baseline width of the RR interval histogram [s]

2.5. Statistical Analysis and Classification Procedure
In order to detect whether subjects were fatigued or not,

according to a literature review (e.g. [5, 67] and references
therein), we divided the isometric exercise session into two sub-
sessions: the first 25% of trial duration; the last 25% of trial
duration. The EMG-MNFs computed on the first and last quar-
ter of the experiment were statistically compared, and a subject
was classified as fatigued if a significant decrease were found
(see two examples of a fatigued and a non-fatigued subjects in
Figure 2). According to the results of this statistical analysis,
we divided the subject-set into two groups: fatigued (F) sub-
jects and non-fatigued (N-F) subjects.

For each subject, we computed the aforementioned features
within the first and the last 25% of EDA signal recorded during
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the isometric exercise, and considered the difference between
these two values. Instead, given the frequency range of the HRV
(<0.4Hz), we could not segment the HRV signal within the first
and the last 25% of the session (time windows less than 30s).
Therefore, in this case the features were calculated within the
whole experimental session and the obtained value were sub-
tracted by the one calculated during the resting phase.

2.5.1. Statistical Analysis
For each feature, we compared values between fatigued

and non-fatigued conditions using the non-parametric Mann-
Withney U test under the null hypothesis that the medians of the
two groups were equal. The choice of a non-parametric test was
justified by the fact that most of the features were not normally
distributed as demonstrated by the Shapiro Wilk test (p < 0.05).
All p-values were corrected following the Holm-Bonferroni’s
method.

2.5.2. Classification Procedure
We applied a pattern recognition algorithm to distinguish be-

tween the two groups of subjects, only using features of ANS
dynamics.. The algorithm used a support vector machine classi-
fier, which implemented a recursive feature elimination (SVM-
RFE) procedure [68, 69, 70]. The algorithm was validated
through a leave-one-subject-out procedure (LOSO) (i.e. leave-
one-out cross validation), which is a nearly unbiased estimator
of the out sample error [71, 50, 72].

In detail, within the LOSO scheme, considering N subjects,
iteratively we split the feature-set in a training set, comprising
data from (N − 1) participants, and a test set comprising data
from the remaining subject. Moreover, for each training set, a
recursive feature elimination (RFE) algorithm is applied. We
specifically chose a recently developed nonlinear SVM-RFE
that employs a radial basis function kernel and includes a cor-
relation bias reduction strategy [68]. At each iteration of the
RFE, the SVM model is trained. The feature with the smallest
ranking criterion is removed since it has the least effect on clas-
sification [68]. The remaining features are kept for the SVM
model used at the next iteration. This process is repeated un-
til all the features have been removed. Then the features are
sorted according to their removal order. The later a feature is
removed, the more important it is. We computed the median
rank for each feature over all folds. Results of the sub-feature-
set that achieved the most accurate classification will be shown
in the following section. The diagonal of the 2 × 2 matrix rep-
resents the percentage subjects correctly classified for each of
the two classes (true positives and true negatives). In the anti-
diagonal, we showed the percentage of the fatigued subjects
that were incorrectly marked as non-fatigued and viceversa.

3. RESULTS

The statistical analysis on the EMG-MNF time series of the
biceps demonstrated that 12 subjects experienced fatigue of this
muscle. In fact, for these subjects a significantly decreasing
trend on EMG-MNF was shown between the first and last 25%

of the exercise duration. The remaining 20 subjects did not
shown fatigue for the biceps brachii and were labeled as non-
fatigued. Same evaluation procedures, although limited to the
other muscles considered in this study, showed non-fatigued
conditions. In addition, a visual inspection analysis was per-
formed to confirm a proper separation of the two groups ac-
cording to the MNF trend. Figure 2 shows two MNF trends
over time from a fatigued subject (lower) compared to a non-
fatigued subject (upper). A decreasing MDF trend, indicating
fatigue condition, is reported in red, while in blue it is shown a
MDF trend related to a subject who, based on our analysis, did
not experience the fatigue condition.
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Figure 2: Example of MDF trends. In red it is reported a decreasing MDF trend
related to a subject belonging to the fatigue group (F). Differently, in blue it is
reported an example of a subject who did not experience the fatigue condition
(N-F).

We then compared EDA and HRV features between the two
groups. Concerning EDA, results are depicted in Fig. 3. Most
of these features did not show significant differences. However,
the standard deviation of the tonic component and the frequency
of the phasic responses showed significant differences between
groups.

No group-wise statistical differences were found in HRV fea-
tures (see Fig. 4).

Results for the classification procedure gathered at each iter-
ation of the RFE procedure are depicted in Figure 5. Moreover,
the confusion matrix related to the best feature combination is
shown in Table 3. The SVM-RFE showed that the most infor-
mative feature-subset comprised features from both the EDA
and HRV series, specifically using markers of parasympathetic
activity (HFnu, HF, RMSSD) and electrodermal sympathetic
activity (AUCphasic, SCRfreq, MaxPeak). Of note, such a pat-
tern recognition system was able to classify the fatigued and
non-fatigued subjects with a balanced accuracy of 83.33%.
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Figure 3: Statistical comparison between fatigue group and non-fatigue group.
Each figure corresponds to one of the EDA features.

Table 3: Confusion matrix of Fatigued Vs Non-Fatigued groups using HRV and
EDA features.

HRV features FATIGUE NON-FATIGUE
FATIGUE 91.67% 25.00%

NON-FATIGUE 8.33% 75.00%

4. DISCUSSION and CONCLUSION

We investigated ANS correlates of muscle fatigue through
combined HRV and EDA analyses. To this end, 32 healthy sub-
jects (16 males) were monitored during a prolonged isometric
contraction. The proposed experimental task naturally induced
the activation of multiple muscles of the upper limb. However,
these conditions mostly led to a major involvement of the biceps
brachii. By limiting our study to the monitoring of superficial
electromyographic activity of the main upper limb muscles, we
labeled participants as fatigued and non-fatigued according to
the sEMG MNF of the biceps brachii (short and long head), up-
per trapezius, deltoideus, triceps brachii, brachioradialis, flexor
carpi radialis, and extensor digitorum communis. To our knowl-
edge, this is the first study proposing an automatic muscle fa-
tigue recognition at a single-subject level based on electroder-
mal and cardiovascular dynamics. Indeed, our results demon-
strate that it is possible to recognize muscle fatigue condition of
biceps using a proper combination of EDA phasic features and
linear/spectral quantifiers of cardiovascular variability.

From a methodological viewpoint, we employed a recently
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Figure 4: Statistical comparison between fatigued group and non-fatigued
group. Each figure corresponds to one of the HRV features.
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Figure 5: Statistical comparison between fatigued and non-fatigued groups.
Each figure corresponds to one of the EDA features.

proposed model of EDA in order to efficiently decompose the
signal into its phasic and tonic components. This process-
ing represents an essential step to effectively derive psycho-
physiological markers [61, 74], In addition, markers of sym-
pathovagal control were derived from HRV analysis performed
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in the time and frequency domains. In this way, we collected
features from two of the most widely used ANS correlates, car-
rying complementary information.

As a preliminary, exploratory step, we performed a statisti-
cal analysis to compare ANS features between the first and last
quarter of the fatiguing exercise. Features from cardiovascu-
lar variability did not show significant changes. Of note, the
inability to calculate the HRV features within a smaller time
window, during the exercise, may have limited our possibility
to detect possible changes of the sympathovagal dynamics. On
the other hand, EDA measurements revealed a significant de-
crease of the sudomotor nerve spike frequency, as well as an
increase of the tonic variability in the case of fatigue. Previous
studies report that the vagal activity is predominant during the
first part of an isometric exercise, whereas the sympathetic ef-
fect prevails close to the completion of the exercise [56]. As
EDA neural control is exclusively sympathetic [47, 74], we can
assume that the sympathetic activity, when muscle fatigue oc-
curs, is reflected in a more variable tonic signal (slow varia-
tions) together with a decrease of faster phasic variations.

We have also proposed a pattern recognition approach able to
automatically recognize muscle fatigue at a single-subject level
using only ANS correlates. In addition we demonstrated that
a proper combination of HRV and EDA features significantly
improves balanced classification accuracy. The automatic mus-
cle fatigue classification was performed using nu-SVM, which
was validated by means of a LOSO cross-validation. Results
showed a satisfactory balanced accuracy of 83.33% when a spe-
cific feature combination was taken into account (see Table 3).
This accuracy results from the combination of a specificity of
91.67%, and a sensitivity of 75.00%. Our results demonstrate
that the discrimination of ANS states associated with muscle
fatigue can be supported by a multivariate machine learning
analysis implemented at a single-subject level, rather than using
group-wise statistics. Of note, the accuracy of the non-fatigued
class, i.e., 75.00%, was fairly lower than the fatigue class. This
could be explained by the conservative technique used to label
the subjects according to a statistical analysis on sEMG spectral
features. More in detail, four out of the five subjects who were
misclassified in the non-fatigued group (i.e., the 25% of false
positives) showed a decrease in the MNF trend from the first
to the last quarter of the task. However, paired statistical anal-
yses on such trends did not show significant differences, pos-
sibly due to the high inter-subject variability. At a speculation
level, this may suggest possible muscle fatigue also in subjects
belonging to the non-fatigued group. In particular, misclassi-
fied subjects may be the most fatigued ones within the non-
fatigued group. Furthermore, a rigorous SVM-RFE procedure
revealed that the most informative features are strongly corre-
lated with the parasympathetic branch of cardiovascular neural
control and the sympathetic activation of the electrodermal pro-
cesses. Of note, the implemented SVM-RFE uses a radial basis
function kernel and reduces bias due to highly correlated fea-
tures. Our results also suggest that the muscle fatigue process
is modulated by both the ANS branches. In this sense, EDA,
which is controlled only by the sympathetic nervous system,
and the HF spectral information of the HRV signal, which is

strongly associated with the parasympathetic activity, have been
confirmed to be an ideal way to monitor the ANS dynamics.

To summarize, this work proposes a non-invasive method-
ology for muscular fatigue detection. However, we are aware
the non-invasiveness and simplicity of our approach comes with
limitations. First, sEMGs cannot consider the effect of deeper
muscles that may contribute to the task and got fatigued, and
sometimes it could possibly lead to controversial outcomes,
e.g. the compensation of MNF decrease in submaximal task
due to the recruitment of new motor units. These issues could
be addressed relying on invasive procedures or through EMG
array-based acquisition and processing techniques, which can
in principle identify the discharge of multi-channel action po-
tentials by individual muscle units [73]. This would certainly
improve the reliability of the results but, on the other side, it
would be in contrast with the minimalistic approach that drove
our work, under a sensing and/or computational point of view.
A comparison between these different approaches is interesting,
and it will deserve future analyses to identify the right trade-off

between effectiveness and usability/simplicity.
These results pave the path towards unobtrusive and wear-

able devices to assess fatigue in working environments or dur-
ing rehabilitative procedures in an ecological fashion. Indeed,
the devices that are able to monitor, for example, HRV series are
already very popular in the everyday life (e.g., smartphones and
smartwatches). In addition, ANS measurements could be also
used to infer the emotional state of the subjects [74, 75, 46],
which can play a crucial role in the rehabilitation procedures
[76].

Future endeavors will be directed to study EMG dynamics
from several muscles locations, and to implement our approach
into a portable device, which integrates, e.g., into a smartwatch,
HRV and EDA sensors (i.e., Empatica wearable systems [77]).
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