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Abstract

The problem of stabilizing linear discrete–time hybrid
automata is considered. A synthesis methodology is ob-
tained by extending to hybrid systems the stabilization
techniques based on stable convex combinations, orig-
inally developed for switching systems. An algorithm
to explore the candidate stabilizing controller actions is
proposed and an application to an automotive engine
control problem is described.

1 Introduction

The problem of controlling discrete–time hybrid au-
tomata has been approached extensively by several re-
search groups. An important approach to hybrid con-
troller synthesis for these systems was proposed by Be-
mporad and Morari (see [3]), who developed hybrid
predictive and optimal control algorithms based on the
MLD modeling framework. The generality and concep-
tual simplicity of the MLD method is very attractive;
however, these advantages are paid in terms of com-
putational complexity, since the approach is based on
the solution of an integer programming problem, an
NP-hard problem. The computational complexity of
the most used algorithms for the solution of an integer
programming problem is exponential in the dimension
of the problem, where the dimension is given in terms
of the number of variables and constraints. Since the
number of variables is proportional to the number of
time steps needed to cover the temporal horizon con-
sidered, the method is applicable to reasonably small
problems.

1The work has been conducted with partial support by the
European Community Projects IST-2001-33520 CC (Control and
Computation) and IST-2001-37170 RECSYS.

In this paper, we present a method that takes advan-
tage of the structural properties of the system to lower
the computational complexity.
We were inspired by the work on the stability prop-
erties of continuous–time switched systems carried out
in [4], [8], [6]and [9] and in particular, by the results
of Wicks who introduced the method of stable convex
combinations (see [11]), and by those of Morse for the
synthesis of robust supervisory controllers (see [10]).
Unfortunately, these results cannot be applied directly
to general hybrid systems. In fact, in switched con-
trol problems, there are no constraints on the possi-
ble sequences of discrete control actions applied by the
supervisor, while, in hybrid automata, transitions are
controlled by either external (controllable or uncontrol-
lable) events and/or by the evolution of dynamics cor-
responding to each state of the automaton, and the
set of allowed controller discrete actions depends on
the hybrid state. Our idea is to “convert” the hybrid
control problem into a switched one by leveraging the
structure of the hybrid automaton. In particular, given
an initial state q0, we find all cycles in the automaton
that pass through q0. Then the sequences of control
actions that correspond to each of these cycles can be
applied in any order. If we consider these sequences
as atomic control actions, we have a control problem
that is a switched control problem. Consequently, it
can be solved applying the stable convex combinations
approach [11]. This approach is less general than the
MLD approach since we consider only a subset of all
possible control laws, but it is more computationally
attractive since finding cycles and solving linear ma-
trix inequalities (the core of the stable combinations
method) has polynomial complexity. However, consid-
ering sequences that correspond to going more than
one time around the cycle is advantageous for our pur-
poses. The number of turns is in principle unbounded.
We have derived conditions that allow us to truncate



these sequences when they do not offer any advantage
and in case these conditions do not apply, we artifi-
cially set a limit on the number of turns to maintain
the computational attractiveness of the method. The
paper is organized as follows. In Section 2, the problem
is formulated. In Section 3, sufficient conditions for the
synthesis of stabilizing switching control laws are pro-
posed, exploiting the use of regular expressions for the
representation of the cyclic paths in the automaton.
In Section 4, an algorithm to carry out an exploration
of the sets of admissible stabilizing controller actions
is described. Finally, in Section 5, the proposed tech-
nique is applied to the design of a stabilizing controller
for an automotive engine.

2 Problem formulation

Let us consider the problem of stabilizing DT (Dis-
crete Time) hybrid automata (see [5]), defined as
follows: a DT hybrid automaton is a tuple H =
(C, C0, Σ, M, ϕ,F). Elements of C = Q × X are called
configurations, where Q = {q1, . . . , qN} is a finite set of
locations and X ⊆ IRn a continuous1 set of states. The
set C0 ⊆ C is the subset of admissible initial configu-
rations. The controller input comes from the domain
Σ, where Σ is a finite set of discrete control events.
The discrete controller move function M : C → 2Σ \ {}
defines a subset of allowable discrete input values for
every configuration. The evolution of the discrete
state q is given by the deterministic transition func-
tion ϕ : Q× Σ → Q

q(k + 1) = ϕ(q(k), σ(k + 1)) ,

with input events satisfying σ(k + 1) ∈ M(q(k), x(k)).
The function M(q, x) is assumed to be expressed by a
set of quadratic guard conditions Gi(x) = xT Wix +
vT

i x + ci ≤ 0, each one associated to an event σi.
The dynamics of the continuous state x is modeled by
the family F of autonomous transition-dependent next-
state linear functions f(q(k),q(k+1)): given (x(k), q(k)) ∈
C, for all q(k + 1) ∈ Q such that q(k + 1) = ϕ(q(k), σ)
for some σ ∈ M(q(k), x(k)),

x(k + 1) = f(q(k),q(k+1))(x(k)) = F(q(k),q(k+1))x(k) .

Given a location q̄ ∈ Q, consider all control sequences
that cause the system to cycle back on q̄. These se-
quences correspond to cycles in the graph of the hybrid
automaton that start and end at q̄. The main idea of
the paper is that, since each one of these sequences can
follow any other then hybrid system stabilization can
be solved applying the stable convex combinations ap-
proach proposed for switching systems [11] to cyclic

1The term continuous refers to the domain of the state values.
For DT hybrid automata, the time domain is obviously discrete.

paths. The resulting stabilizing control law will be
the correspoding composition of transformations asso-
ciated to the cyclic paths. According to these consid-
erations, we state the stabilization problem as follows:

Problem 1 Given a linear DT hybrid automaton H =
(C, C0, Σ, M, ϕ,F), find a hybrid feedback control σ ∈
M(q, x), such that a location q̄ ∈ Q and a function
V (x) = xT Px exist, with P ∈ IRn×n and P = PT > 0,
for which we have that ∀ (q(0), x(0)) ∈ C0 and ∀i ≥ 0,
V (x(hi+1)) − V (x(hi)) < 0, where hi is the sequence
of indexes for which q(hi) = q̄, limi→∞ hi = ∞ and
hi+1 − hi is bounded.

Notice that the previous definition requires strict con-
tractivity of the function V (x) only on the subsequence
hi of the discrete time instants. This is enough for our
purposes, since for linear hybrid automata, the contin-
uous state has bounded evolutions over bounded time
windows hi, . . . , hi+1.

3 Stabilization of DT Hybrid Automata

In this section, we give sufficient conditions for stabiliz-
ing DT hybrid automata by switching between feasible
cyclic paths. The number of such paths to be con-
sidered is quite large, since we have to look at simple
cycles, as well as at multiple ones. In the following,
we provide sufficient conditions for the elimination of
cyclic paths that are dominated by others, thus reduc-
ing the complexity of the computation and of the re-
sulting stabilizing control law. In the characterization
of cyclic paths, we make use of the theory of regu-
lar expressions. A regular expression E is obtained by
composing the symbols of a finite alphabet A with the
operators ’+’ (union), ’·’ (concatenation) and ’*’ (in-
finite repetition). A string is a finite concatenation of
symbols. A rigorous and comprehensive treatment of
this topic can be found in [7]. In the following, we iden-
tify cyclic paths on a DT hybrid automaton H with the
strings accepted by the finite automaton HF , obtained
from H by abstracting away the continuous dynamics.

Definition 2 Given a DT hybrid automaton H, define
the finite automaton HF as a tuple (Q,A, ϕD, q0,Qf )
(see [7]) where: the set of states is the set Q of locations
of H; the set of input symbols A is defined by a map
Ψ : Q×Q → A, such that a = Ψ(q1, q2) if ϕ(q1, σ) = q2

for some σ ∈ M(q1, x) and x ∈ IRn, with Ψ invertible in
A; the transition function ϕD : Q×A → Q is defined as
q2 = ϕD(q1, a) for all a = Ψ(q1, q2); the initial location
q0 is any location in Q reachable by H from any (q, x) ∈
C0; the set Qf of accepting locations is {q0}. Then, we
say that a regular language L is accepted by H, if and
only if it is accepted by HF .



Let L be the regular language accepted by HF . Since
Qf = {q0}, then L can always be written as L =
(E1 + . . . + ES)∗ where E1 . . . ES are regular expres-
sions on the input alphabet A. These expressions can
be connected in any possible way, obtaining regular
expressions still accepted by HF . We focus on strings
accepted by HF : indeed, a string on the alphabet A
corresponds biunivocally to a sequence of transitions
of H, i.e. to a composition of next-state functions.

Definition 3 Given a DT hybrid automaton H, let
S = a1 · a2 · . . . · a�, with ai ∈ A, be a string belonging
to the regular language L accepted by H according to
Definition 2:

• S corresponds to an admissible control cycle for
the DT hybrid automaton H if and only if
(1) S is a cycle, i.e.2 a� = Ψ(q′, q0) with q′ ∈ Q;
(2) there exists x0 ∈ IRn such that S can be exe-
cuted3 by H if H is initialized at (q0, x0);

• to S is associated the matrix4

A =
∏

(qm,qn)=Ψ−1(aj),j=1,...,l

F(qm,qn) .

3.1 Stabilizing control actions
In this section, the stabilization problem for a given set
of admissible control cycles is expressed by means of a
DT version of the stable convex combination method
(see [11]). Consider a linear DT hybrid automaton
H = (C, C0, Σ, M, ϕ,F) and let L = (E1 + . . . + Es)∗

be the regular language accepted by H. Let Lk =
(S1 + . . . + Sk)∗ denote a regular sublanguage of L,
defined by strings S1 . . . Sk corresponding to admissi-
ble control cycles, with Si = ai1 . . . ai�i for i = 1, . . . , k.
Let Ai1 . . . Ai�i be the continuous dynamic transforma-
tion matrices associated to the symbols ai1 . . . ai�i and
let A1 . . . Ak be the matrices associated to S1 . . . Sk, ac-
cording to Definition 3.
Given a matrix P ∈ IRn×n, with P = PT > 0, define

Ãi =
[

Ai 0
0 1

]
, Ãij =

[
Aij 0
0 1

]
, P̃ =

[
P 0
0 1

]
.

Let Pk
c denote the LMI problem for positive coefficients

δ1 . . . δk and µ11 . . . µ1�1 . . . µk1 . . . µk�k
defined by

∑k
i=1 δi

(
AT

i PAi − P
)

< 0 (1)

2Since S ∈ L, then a1 = Ψ(q0, q′).
3Assuming (q(0), x(0)) = (q0, x0), for k = 0, . . . , � we have

q(k + 1) = ϕ(q(k), σ(k)), with Ψ(q(k), q(k + 1)) = ak , for some
σ(k) ∈ M(q(k), x(k)), and x(k + 1) = F(q(k),q(k+1))x(k).

4The symbol
∏

stands for the matrix left–product.




Hi1 − µi1

(
ÃT

i P̃ Ãi − P̃
)
≤ 0

ÃT
i1Hi2Ãi1 − µi2

(
ÃT

i P̃ Ãi − P̃
)
≤ 0

...(
ÃT

i1 . . . ÃT
i�i−1

)
Hi�i

(
Ãi�i−1 . . . Ãi1

)
−

µi�i

(
ÃT

i P̃ Ãi − P̃
)
≤ 0

for every i ∈ {1 . . . k}

(2)

where Hi1 . . . Hi�i ∈ IR(n+1)×(n+1) are defined by

Gij(x) =
[
xT 1

]
Hij

[
x
1

]
≤ 0, Hij =

[
Wij

vij

2
vT

ij

2 cij

]
.

If Pk
c has a solution, ∀x ∈ IRn there always exists at

least an index i ∈ {1 . . . k}, depending on x, such that
xT

(
AT

i PAi − P
)
x < 0 and the control cycle corre-

sponding to Ai is admissible on x. This construction
naturally induces a family of stabilizing feedback laws,
among which a possible choice is

i = argminj

{
xT

(
AT

j PAj − P
)
x
}

(3)

The following theorem establishes5 the relation be-
tween Pk

c and Problem 1.

Theorem 4 Let L = (E1 + . . . + Es)∗ be the regular
language accepted by H. Consider the regular language
Lk = (S1 + . . . + Sk)∗ ⊆ L, where S1 . . . Sk are strings.
If the problem Pk

c associated to Lk has a solution, then
Problem 1 admits a solution.

Notice that Pk
c is a conservative approximation of

Problem 1. Nevertheless, to the best of our knowledge,
we are not aware of any necessary and sufficient condi-
tion for the stabilizability of switched systems, except
for the case of two control modes.

3.2 Stabilizability analysis
In this subsection, we present necessary conditions for
the solvability of Pk

c , as the index k increases. A nec-
essary condition for Pk

c to be solvable is the solvability
of the problem Pk defined by (1). Since Pk is obtained
from Pk

c by removing guard conditions (2), if Pk+1 is
not solvable, neither is Pk+1

c . The following lemma
relates the solvability of problems Pk and Pk+1:

Lemma 5 Let L = (E1 + . . . + Es)∗ be the regular
language accepted by H. Consider two regular lan-
guages Lk = (S1 + . . . + Sk)∗ ⊆ L and Lk+1 =
(S1 + . . . + Sk + Sk+1)∗ ⊆ L, with Si a succession
of strings and Lk ⊂ Lk+1. Let A1 . . . Ak, Ak+1 be the
corresponding matrices. If Pk has no solution, and if

5Proofs are omitted due to space limitation.



positive coefficients τ1 . . . τk exist such that

k∑
i=1

τi

(
AT

i PAi − P
) − (

AT
k+1PAk+1 − P

) ≤ 0 (4)

then Pk+1 has no solution.

In fact, if (4) has a solution, it follows that ∀x ∈ IRn

satisfying xT
(
AT

k+1PAk+1 − P
)
x < 0, there exists at

least one i ∈ {1 . . . k} such that xT
(
AT

i PAi − P
)
x <

0. Consequently, the addition of the matrix Ak+1 does
not bring any benefit to the stabilizability of the sys-
tem, with respect to the matrix P . We shall indicate
this fact by writing Lk+1 	P Lk.
The following theorem relates the solvability of prob-
lems Pk′

and Pk, in the general case k > k′ and pro-
vides a criterion for the choice of the matrix P .

Theorem 6 Let L = (E1 + . . . + Es)∗ be the regular
language accepted by H. Consider the succession of
regular languages {Lk} defined by Lk = (S1 + . . . +
Sp + Ss0 + . . . + Ssk−1 + Ssk

)∗ ⊆ L, where S1 . . . Sp

are strings and Ssh
= αβhγ, for h = 0, . . . , k, with α,

β and γ strings. Let Ash
= AγAh

βAα be the matrix
associated to Ssh

. Assume that det(Aα) 
= 0. If k̄ > 0
exists such that one of the following conditions holds:

• ∃δ ∈ (0, 1], ∃P ∈ IRn×n, P = PT > 0, such that


(
AT

sk̄−1
PAsk̄−1

− P
)
− δ

(
AT

sk̄
PAsk̄

− P
)
≤ 0(

AT
αAT

β A−T
α

)
P

(
A−1

α AβAα

) − P ≤ 0
(5)

and Aβ is stable

• ∃δ > 1, ∃P ∈ IRn×n, P = PT > 0, such that


(
AT

sk̄−1
PAsk̄−1

− P
)
− δ

(
AT

sk̄
PAsk̄

− P
)
≤ 0(

AT
αAT

β A−T
α

)
P

(
A−1

α AβAα

) − P ≥ 0
(6)

and Aβ is unstable

then Lk 	P Lk−1, ∀k ≥ k̄.

The following corollaries are useful to deal with regular
expressions Ei containing more than one not nested ’*’
operator. This occurs when two or more distinct cycles
are present on the same control sequence.

Corollary 7 Let L = (E1 + . . . + Es)∗ be the regular
language accepted by H. Consider the successions of
regular languages {Lk

1}, {Lk
2} defined by

Lk
1 =(S1 +. . .+ Sp + S1

s0
+. . .+ S1

sk−1
+ S1

sk
)∗⊆ L

Lk
2 =(S1 +. . .+ Sp + S2

s0
+. . .+ S2

sk−1
+ S2

sk
)∗⊆ L

where S1 . . . Sp are strings, S1
sh

= α1β
hγ and S2

sh
=

α2β
hγ, with α1, α2, β and γ strings. Associated to S1

sh

and S2
sh

are the matrices AγAh
βAα1 and AγAh

βAα2 , re-
spectively. Assume that det(Aα1) 
= 0 and det(Aα2) 
=
0. Let P1 > 0 be a matrix satisfying (5–6) for
all Lk

1 , with k ≥ k′ for some k′, and let P2 =(
AT

α2
A−T

α1

)
P1

(
A−1

α1
Aα2

)
. If either Aβ is stable and

P2 − P1 ≤ 0, or Aβ is unstable and P2 − P1 ≥ 0, then
Lk+1

2 	P1 Lk
2 , ∀k ≥ k′.

Corollary 8 Let L = (E1 + . . . + Es)∗ be the regular
language accepted by H. Consider the successions of
regular languages {Lk

1}, {Lk
2} defined by

Lk
1 =(S1 +. . .+ Sp + S1

s0
+. . .+ S1

sk−1
+ S1

sk
)∗⊆ L

Lk
2 =(S1 +. . .+ Sp + S2

s0
+. . .+ S2

sk−1
+ S2

sk
)∗⊆ L

where {S1 . . . Sp} are strings, S1
sh

= αβhγ1 and S2
sh

=
αβhγ2, with α, β, γ1 and γ2 strings. Associated to S1

sh

and S2
sh

are the matrices Aγ1A
h
βAα and Aγ2A

h
βAα, re-

spectively. Assume that det(Aγ1) 
= 0 and det(Aγ2) 
=
0. Let P1 > 0 be a matrix satisfying (5–6) for
all Lk

1 , with k ≥ k′ for some k′, and let P2 =(
A−T

γ2
AT

γ1

)
P1

(
Aγ1A

−1
γ2

)
. If either Aβ is stable and

P2 − P1 ≥ 0, or Aβ is unstable and P2 − P1 ≤ 0, then
Lk+1

2 	P2 Lk
2 , ∀k ≥ k′.

4 Exploration algorithm

In this section, an algorithm for the exploration of se-
quences of discrete control actions solving Problem 1
is proposed. The development is limited to the case,
of interest in our engine control application, in which
all the expressions Ei in the regular language L =
(E1 + . . . + ES)∗ do not contain nested ’*’ operators.
Assume that each E ∈ {E1, . . . , ES} is of the form

E = Y E
1 · · ·Y E

�E
with Y E

j = αj(βj)∗γj for j = 1 . . . �E

where αj , βj and γj are strings (possibly equal to ε)
to which linear transformations Aαj , Aβj , Aγj are as-
sociated. Given a regular expression E, by specifying
a vector kE = (kE

1 , . . . , kE
�E

) ∈ IN�E , the string

SE(kE) = α1β
kE
1

1 γ1 · · ·α�Eβ
kE

�E

�E
γ�E (7)

is defined. Furthermore, to each Y E
j in E is as-

signed a prefix α1β
kE
1

1 γ1 · · ·αj−1β
kE

j−1
j−1 γj−1αj , a suffix

γjαj+1β
kE

j+1
j+1 γj+1 · · ·α�Eβ

kE
�E

�E
γ�E , and the correspond-

ing matrices

Ā
(j)
Eα(kE

1 . . . kE
j−1) = Aαj (Aγj−1A

kE
j−1

βj−1
Aαj−1 ) · · · (8)

(Aγ2A
kE
2

β2
Aα2) · (Aγ1A

kE
1

β1
Aα1)



Ā
(j)
Eγ(kE

j+1 . . . kE
�E

) = (Aγ�E
A

k�E

β�E
Aα�E

) · · · (9)

(Aγj+1A
kE

j+1
βj+1

Aαj+1 )Aγj

Let (kE1 . . . kES) ≡ (kE1
1 . . . kE1

�1
, kE2

1 . . . kES

�S
) ∈ INΣ�Ei

be the collections of vectors kE1 · · ·kES . Introduce
the regular language L(kE1 ...kES ) ⊆ L obtained from L
by replacing the regular expressions Ei by the strings
SEi(hEi) defined in (7), with hEi = (hEi

1 , . . . , hEi

�Ei
)

and 0 ≤ hEi

j ≤ kEi

j . Let P(kE1 ...kES )
c denote the prob-

lem (1–2) defined on the regular language L(kE1 ...kES )

and P(kE1 ...kES ) the corresponding unconstrained prob-
lem.
The proposed exploration algorithm is reported in Fig-
ure 1. The algorithm performs an implicit visit of the
languages L(kE1 ...kES ) ⊆ L, defined by (kE1 . . . kES )
with entries kE

j upper bounded by a maximum value
Kmax, given as input parameter. The solutions are re-
turned in the set S, as pairs of a vector (kE1 . . . kES )
defining the language and the corresponding Lyapunov
matrix PE

j . The idea that lies behind this algorithm
is that of determining, for every regular expression
Y E

j = αj(βj)∗γj , the maximum value up to which it
is useful, or allowed, to push the exponent hE

j of βj

in order to solve problem Pc. Variable KE
j represents

the maximun exponent for βj in Y E
j currently assessed.

KE
j is initialized to Kmax and is reduced each time a

language inclusion condition is verified. At each itera-
tion, a matrix PE

j is chosen such that PE
j = (PE

j )T > 0
and

(A(j)
Eα

T
Aβj

T A
(j)
Eα

−T
)PE

j (A(j)
Eα

−1
Aβj A

(j)
Eα) − PE

j (10)

is not indefinite, where A
(j)
Eα = Ā

(j)
Eα(kE

1 . . . kE
j−1) is as

in (8), with kE
i = L for i = 1, . . . , j − 1. It is assumed

that matrices (8–9) are not singular. Then, the prob-

lem P(kE1 ···kES )|k
E
j =h

�=L , defined as P(k
E1
1 ···kE

j ···kES
�S

) with
kE

j = h and kEr

i = L for Er 
= E or i 
= j, is eval-
uated for increasing h, i.e. increasing power of βj . If
it is solvable for some h, then the corresponding con-

strained problem P(kE1 ···kES )
c |k

E
j =h

�=L is tested and, if the
latter is solvable, the corresponding (kE1 · · · kES) vec-
tor is stored in S. Hence, if the unconstrained problem

P(kE1 ···kES )|k
E
j =h

�=L is not solvable, for h up to KE
j , then

Theorem 6 is tested on

Lh = L(kE1 ···kES )|k
E
j =h

�=L , Lh+1 = L(kE1 ···kES )|k
E
j =h+1

�=L

(11)
and, if the languages inclusion condition (5–6) is ver-
ified, then Corollaries 7 and 8 are evaluated on {Lh

1},
with Lh

1 as in (11), and {Lh
2} with

Lh
2 = L(kE1 ···kES )|k

E
j =h

�=m with m = L, . . . , KEr

i (12)

to cut off from the search space exponents for βj in
Y E

j = αj(βj)∗γj greater than h.

S = Explore( Kmax )
S = {};
for each E ∈ {E1 . . . ES} and Y E

j ∈ Y
KE

j = Kmax;
end
for L = 1 . . .Kmax

if (L > minE,j KE
j ) then break; end

for each E ∈ {E1 . . . ES} and Y E
j ∈ Y

compute PE
j as in (10);

h = L;

while (P(kE1 ···kES )|k
E
j =h

�=L is solvable for PE
j ) do

if (P(kE1 ···kES )
c |k

E
j =h

�=L is solvable for PE
j ) then

S = S ∪
[
(kE1 · · · kES)|k

E
j =h

�=L , PE
j

]
;

end
if (h = KE

j ) then break; else h = h + 1; end
end
if (h < KE

j ) then
if (Theorem 6 is verified on (11)) then

if (Corollaries 7 and 8 hold for (12)) then
KE

j = h;
end

end
end

end
end

end

Figure 1: Exploration algorithm.

5 Engine control application

The motivating problem for this research was the de-
sign of feedback control for the stabilization of an auto-
motive engine on a given set point. In Figure 2 it is de-
picted a DT hybrid automaton representing the torque
generation mechanism and the powertrain dynamics of
a 4–cylinder in–line engine, which has been obtained
from the discretization of a hybrid engine model de-
scribed in [2] and [1]. The automaton has four locations
{q1, . . . , q4}. Automaton transitions are synchronous
with continuous state updates and depend on the dis-
crete events σi. The three discrete controlled events
σ−, σ0 and σ+, represent the choice of three different
values of spark advance6, namely a negative spark ad-
vance φ−, the zero spark advance and a positive spark
advance φ+. Transitions (q2, q4) and (q3, q1) are fired
by the internal event σdc, that occurs when one of the
four pistons reaches a top dead center. Notice that
these transitions are the only exit transitions from lo-
cations q2 and q3. The DT hybrid automaton has a
four-dimensional continuous state x, with components

6Specifying different spark ignition times, see [2] for details.
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Figure 2: DT hybrid automaton of the engine.

n − n0, T − T0, mc − mc0, and me − me0, where: T
is the generated torque; n is the crankshaft revolution
speed; mc and me are the masses of air loaded in the
cylinder that is, respectively, in the compression and
in the expansion stroke; and n0, T0, mc0, me0 are the
corresponding values at set point. At each qi → qj

transition of the automaton, the continuous state is up-
dated according to a given linear next–state function
f(qi,qj)(x(k), u(k)) = F(qi,qj)x(k) + b(qi,qj)u(k), where
the continuous input u(k) represents the mass of air
ma(k) to be loaded in the cylinders7.
In the sequel, the design of a stabilizing feedback con-
troller using the technique presented in Sections 3 and 4
is illustrated. The requested mass of air ma(k) is
obtained by linear feedbacks ma(k) = K(qi,qj)x(k),
where parameters K(qi,qj) depends on the automa-
ton transition. In Figure 2, matrices Ai represent
the closed–loop matrices so obtained. Let q1 be the
unique initial/accepting location and let us associate
to each transition with dynamic matrix Ai the label
ai. The corresponding accepted regular language is
L = (a1 + a5(a7a6)∗a7a2 + a5(a7a6)∗a7a4a3 + a8a3)∗ =
(E1 +E2 +E3 +E4)∗, where E1 = a1, E2 = α2(β2)∗γ2,
E3 = α3(β3)∗γ3, and E4 = a8a3, with α2 = a5, β2 =
a7a6, γ2 = a7a2, α3 = a5, β3 = a7a6, γ3 = a7a4a3. In-
vertibility of matrices (8) is verified for feedback gain
matrices K5 such that det(A5) 
= 0. Consider, for
any h2, h3 ≥ 0, the regular language L(h2,h3) = (a1 +
a5(a7a6)h2a7a2 + a5(a7a6)h3a7a4a3 + a8a3)∗. It is easy
to see that, since the regular expressions E2 and E3 are
not concatenated, both Corollaries 7 and 8 are satisfied
for every possible pair of languages (L(h1

2,h1
3),L(h2

2,h2
3)),

and invertibility of matrices (9) is not required. Run-
ning the exploration algorithm reported in Figure 1, for
maximum depth kmax = 20, the first language tested
is L(0,0) = (a1 + a5a7a2 + a5a7a4a8 + a3a8)∗. The first

7In engines equipped with an electronic throttle valve, an in-
take manifold controller is in charge of providing the requested
air mass for each intake stroke.

solutions found are L(2,0), L(1,1), L(2,1). The obtained
solutions have been used to design a hybrid controller
that implements the control law (3). Then, this con-
troller has been connected to a model of the engine and
the closed-loop system has been simulated.

6 Conclusions

We presented a novel approach to the stabilization of
linear discrete–time hybrid automata based on the sta-
ble convex combinations method proposed for switched
systems. To apply this approach, we identified a set
of control actions for hybrid automata that share the
same characteristics as the ones for switched systems.
These control actions correspond to cyclic paths in the
graph of the automaton. Since the number of candi-
date control actions may be high, we also give sufficient
conditions for the elimination of several paths that are
dominated by others, based on which an exploration
algorithm has been proposed. The method has been
tested on an industrial problem in automotive engine
control that motivated this research. Future work will
focus on extending the approach to linear discrete–time
hybrid automata with continuous inputs.
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