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Abstract. In this paper we consider the generalization of the classical
notion of nonholonomy of smooth constraints in analytical mechanics,
to a substantially wider set of systems, allowing for discrete and hy-
brid (mixed continuous and discrete) configurations and transitions. We
show that the general notion of nonholonomy can be captured by the
definition of two different types of nonholonomic behaviours, which we
call internal and external, respectively. Examples are reported of systems
exhibiting either the former only, or the latter only, or both. For some
classes of systems, we provide equivalent or sufficient characterizations
of such definitions, which allow for practical tests.

1 Introduction

Although nonholonomic mechanics has a long history, dating back at least to
the work of Hertz and Hölder towards the end of the 19th century, it is still
today a very active domain of research, both for its theoretical interest and its
applications, e.g. in wheeled vehicles, robotics, and motion generation. In the
past decade or so, a flurry of activity has concerned the study of nonholonomic
systems as nonlinear dynamic systems to which control theory methods could
be profitably applied. As a result, the control of classical nonholonomic mechan-
ical systems such as cars, trucks with trailers, rolling 3D objects, underactuated
mechanisms, satellites, etc., has made a definite progress, and often met a satis-
factory level.

Systems considered in classical nonholonomic mechanics are smooth, contin-
uous time systems, i.e., they can be described by ODEs on a smooth manifold of
configurations, on which smooth (most often, analytic) constraints apply. How-
ever, nonholonomic-like behaviours can be recognized in more general systems,
some of great practical relevance, which may present for instance discontinuities
of the dynamics, discreteness of the time axis, and discreteness (e.g., quantiza-
tion) of the input space. For these systems, some very basic control problems
such as the analysis of reachability and the synthesis of steering control sequences
still pose quite challenging problems.
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This paper attempts at providing a general conceptual framework capable of
capturing the notion of nonholonomy for a broad class of systems, allowing for
discrete and hybrid (mixed continuous and discrete) configurations and transi-
tions. Upon the analysis of few simple but significant examples, a unique defini-
tion encompassing all “intuitively nonholonomic” behaviours in hybrid systems,
does not appear to be feasible, or practical. Hence we propose the definition
of two different types of nonholonomic behaviours, which we call internal and
external, respectively. These two types are not obviously reducible to a single
one, and indeed we show examples of simple mechanical systems exhibiting only
internal, only external, or both internal and external nonholonomy, respectively.
Although our definitions are not always directly computable, we provide equiva-
lent, or sufficient conditions for some specific classes of systems, which allow for
practical tests to be applied.

2 Nonholonomic behaviours in nonsmooth systems

In general, classical nonholonomic constraints come in two varieties, kinematic
constraints (often due to contact kinematics, as e.g. in rolling), and dynamic
constraints (due to symmetries induced by conservation laws, for instance, of
angular momentum) [1, 2]. In this paper we focus on the former type. Recall
the definition of a (smooth) nonholonomic constraint that is familiar from el-
ementary mechanics textbooks: a mechanical system described by coordinates
q ∈ Q, with Q a smooth n-dimensional manifold, subject to m smooth con-
straints A(q)q̇ = 0, is nonholonomic if A(·) is not integrable.

An equivalent description of such systems is often useful, which uses a basis
G(q) of the distribution that annihilates A(q) to describe allowable velocities
q̇ ∈ TqQ as

q̇ = G(q)u. (1)

Thanks to Frobenius’ theorem, nonholonomy can thus be investigated by study-
ing the Lie algebra generated by the vector fields in G(q), or, in other terms, by
analyzing the geometry of the reachability set of (1). Such simple formulation
of kinematic nonholonomic systems is sufficient to illustrate two fundamental
aspects of nonholonomy:

1) elements of u ∈ IRn−m in (1) play the role of control inputs in a non-
linear, affine–in–control, driftless dynamic system. If the original constraint is
nonholonomic, the dimension of the reachable manifold is larger than the num-
ber of inputs. This has motivated purposeful introduction of nonholonomy in
the design of mechanical devices, to spare actuator hardware while maintaining
steerability (see e.g. [3, 4]). Notice explicitly that for driftless systems, reach-
ability on a manifold with dimension larger than the dimension of the input
space is an essentially nonlinear phenomenon, which is altogether destroyed by
linearization, and can be considered as a synonim of nonholonomy;

2) the effects of different consecutive inputs in nonholonomic systems do not
commute. Moreover, such noncommutative inputs may produce net motions of
the system in directions not belonging to the input distribution evaluated at
the starting point. This observation is crucial in the interpretation of the role of
Lie–brackets in deciding integrability of the system[5].



Behaviors that, by similarity, could well be termed “nonholonomic”, may
actually occur in a much wider class of systems than mechanical systems with
smooth contact constraints or symmetries. Let us refer to general time-invariant
dynamic systems as a quintuple Σ = (Q,U , Ω,A), with Q denoting the config-
uration set, U a set of admissible input symbols, Ω a set of admissible input
streams (continuous functions, or discrete sequences) formed by symbols in U ,
and A a state–transition map A : Q× Ω → Q. In many cases U is determined
by a set of controls defined on an ordered time set, T .

It has been observed that in piecewise smooth (p.s.) systems (where time
is continuous, Q is a p.s. manifold, and A is a p.s. map) with holonomic dy-
namics within each smooth region, nonholonomic behaviours can be introduced
by switching among different smooth regions of the configuration space. Piece-
wise holonomic systems have been studied rather extensively (see e.g. [6–10]). A
prominent role in the study of p.s. nonholonomic systems is played by tools from
differential geometric control theory (cf. [1, 2]) and from the theory of stratified
manifolds ([11]).

Nonholonomic behaviors may also be exhibited by discrete–time systems
(T = IN). Consider that, if Q and U in the system quintuple represent continuous
sets, a classical discrete–time control system is described. For such systems, the
reachability problem has been already clarified in the literature (see e.g. [12–15]).
On the other hand, if Q and U are assumed to be discrete sets, then the system
essentially represents a sequential machine (automaton). Reachability questions
for such systems are fundamentally equivalent to graph connectivity analysis, an
extensively studied topic.

A particularly stimulating problem arises whenQ has the cardinality of a con-
tinuum, but U is quantized (i.e. finite, or discrete with values on a regular mesh).
Such systems, which will be referred to as quantized control systems (QCS), are
encountered in many applications, due e.g. to the need of using finite–capacity
digital channels to convey information through an embedded control loop, or to
abstract symbolic information from too complex sensorial sources (such as video
images in visual servoing applications). As a consequence, several researchers
devoted their attention to this type of systems (see e.g. [16, 17, 6, 18]). It is im-
portant to notice that, while inputs are quantized, the system configurations are
not a priori restricted to any finite or discrete set: thus, it may happen that the
reachable set has accumulation points, or is dense in the whole space, or in some
subsets, or nowhere ([19]).

Chitour and Piccoli [20] have studied a quantized control synthesis problem
for the linear case x+ = Ax+Bu, providing sufficient conditions and a construc-
tive technique to find a finite input set U to achieve a reachability set which is
dense in Q. The analysis of the reachability set of a QCS with a given quantized
input set U , has been considered in [21, 19]. In these papers, a complete analysis
is achieved for driftless linear systems (while it is pointed out that the problem
for general linear systems is as though as some reputedly hard problems in num-
ber theory), and for a particular class of driftless nonlinear systems, namely the
exact sampled models of n-dimensional chained–form systems ([22]), which can
be considered as the simplest nonholonomic system model.



3 A set of examples

To motivate and drive our discussion, we start by illustrating few basic examples
of systems whose behaviour we should like any definition of hybrid nonholonomy
to be able to capture.

Example 1. A first set of elementary examples is obtained by considering the
Heisenberg-Brockett nonholonomic integrator ([6])

Dq =




1
0
−y


 u1 +




0
1
x


 u2, q ∈ Q = IR3, (2)

in four different settings:
1-i) Continuous time (t ∈ T = IR+, Dq := d

dtq(t)), continuous control (u ∈
U = IR2). The system is nonholonomic in the classical sense.

1-ii) Discrete time (t ∈ T = IN, Dq := q(t + 1)− q(t)), continuous control;
1-iii) Continuous time, quantized control (u ∈ U , Card (U) ∈ IN, Ω =

piecewise-constant functions with values in U . For instance, take U =
{
(u1, u2)T |

u1 ∈ {0, a,−a}, u2 ∈ {0, b,−b}}, for some constant a, b ∈ IR;
1-iv) Discrete time, quantized control.
Example 2. As an example of a piecewise holonomic system, we will consider

the simplified version of one of Brockett’s rectifiers ([23]) in figure 1. The tip of

Fig. 1. A micro-electro-mechanical (M.E.M.) motion rectifier illustrating the definition
of external nonholonomy in a piecewise holonomic system.

a piezoelectric or electrostrictive element oscillates in the x–direction, while an
actuator drives the oscillator support along the y–direction. When y reaches a
threshold y0, dry friction is sufficient to push the rod in the z–direction. Dis-
regarding dynamics, the rectifier can be modeled by a continuous–time system
with configurations q = (x, y, z) ∈ Q = IR3. Assuming that the velocity of the
support (ẏ), and of the oscillator tip (ẋ) can be freely chosen, a model for this
system congruent with the definitions above would be




ẋ
ẏ
ż


 =




0
1
0


 u1 +




1
0
0


 u2 +




1
0
1


 u3



Fig. 2. Three discrete approximations of the plate-ball systems.

with the input restrictions {
u3 = 0 y < y0

u2 = 0 y ≥ y0
.

Example 3. As a third example, we consider a system comprised of a polyhe-
dron with one face lying on a plane, which is rolled by control actions which place
one of the adjacent faces on the plane (i.e., by rotating the polyhedron about one
of the edges of the face currently in contact by the exact amount that brings an
adjacent face onto the plane). This can be regarded as a discrete approximation
of the plate-ball system (see fig. 2), a standard example in nonholonomic text-
books. Although it may seem intuitive that “nonholonomy” is conserved by at
least the finest approximations, no current definition of “nonholonomy” would
be applicable to this example.

4 Discrete Nonholonomy

From consideration of examples 2 and 3, it follows directly that to afford the
generality we aim at, the input set in the system quintuple Σ should be state–
dependent. In other words, different sets of input actions may be available at
different states, as it is clearly the case for the polyhedron when lying with
different faces on the plane. To deal with this problem, let us be more specific
on the definition of the input set U , and assume that there exists a multivalued
function φ : Q → U where φ(q) = Uq ⊂ U is the set of admissible inputs at q.

Consider an input equivalence relation on Q given by q1
U≡ q2 iff φ(q1) = φ(q2),

and denote Q/φ the set of input equivalence classes, [q] the input equivalence
class of q.

Further, let Ωq be the language over U consisting of admissible input streams
for the system being currently in configuration q. For each q ∈ Q and ω ∈ Ωq, let



the end-point map, i.e. the state that the system reaches from q under ω ∈ Ωq,
be denoted as A(q, ·) : Ωq → Q, or simply as Aq(ω).

Two configurations q1, q2 are stream equivalent (denoted q1
Ω≡ q2) iff Ωq1 =

Ωq2 . Accordingly, Q/Ω denotes the set of stream equivalence classes, and [q]Ω is
the stream equivalence class of q. Clearly, input and stream equivalence classes
coincide if the following compatibility condition of the map A with the equiva-

lence relation
U≡ holds (see [24]):

[H1] ∀q1
U≡ q2 and ∀u ∈ Uq1(= Uq2), Aq1(u)

U≡ Aq2(u).

We assume in the following that Q is a manifold and that each input and
stream equivalence classes are connected submanifolds of Q.

Denote by Ω̃q = {ω ∈ Ωq : Aq(ω) ∈ [q]} the sublanguage consisting of those
input streams which steer the system eventually back to the same equivalence
class of the initial point. For ω1, ω2 ∈ Ω̃q, the stream concatenation ω1ω2 is
well defined. The notion of kinematic (i.e., driftless) systems of the form (1)
can be extended in this context by the assumption that Ω̃q contains an identity
element, 0 ∈ Ω̃q, such that Aq(0) = q, for all q ∈ [q]. In general, the language
Ω̃q is not prefix-closed. However, we will also consider the orbit of q ∈ [q] under

Ω̃q (denoted as Rq(Ω̃q)) as the reachable set from q under words in the prefix-

closure Ω̃q of Ω̃q, in other wordsRq(Ω̃q) :=
{

p ∈ Q : p = Aq(ωs), ωs ∈ Ω̃q

}
with

Ω̃q :=
{

ωs ∈ U∗ : ∃ωt ∈ U∗, (ωsωt ∈ Ω̃q)
}

.
Consideration of the examples above, and the introduction of input equiva-

lence classes and orbits, induces us to consider two different types of behaviours
which may be termed “nonholonomic” by analogy with observations made in
paragraph 2 about the increased reachability afforded by cyclic controls. Loosely
speaking, we will refer to the case where cyclic switchings that temporarily “get
out” of an equivalence class add to reachability more than what availed by paths
“staying in”, as to an “external” type of nonholonomy. On the other hand, when
there exist reachability-generating cycles which keep the configuration always
within the same equivalence class, or orbit, then we will speak of an “internal”
type of nonholonomy.

4.1 External Nonholonomy

More precisely, consider the maximal sublanguage Ω̂q ⊆ Ω̃q of words that al-
ways keep the configuration within the same equivalence class, and compare the
corresponding orbit Rq(Ω̂q) = Rq(Ω̂q) ⊆ [q] with the set reachable from q under
Ω̃q, Rq(Ω̃q) = {Aq(ω) : ω ∈ Ω̃q}.
Definition 1. A system (Q,U , Ω,A) is said to be externally nonholonomic at
q ∈ Q if Rq(Ω̃q) % Rq(Ω̂q).

Checking for external nonholonomy directly from its definitions is clearly not
feasible in general. However, under some mild conditions, we can replace the set



comparison in the definition with a comparison of groups, which can be easily
computed in many cases, for instance comparing sets of generators for the groups
themselves.

Let QQ be the set of mappings of Q into itself. The action of words in Ω
on Q a : Ω → QQ, a(ω) 7→ A(·, ω), with a null element ε ∈ Ω such that
a(ε) = A(·, ε) = Id, and with the natural composition law on QQ, is a monoid
homomorphism. Let S̃ ⊂ QQ be the subset of bijective, hence invertible, maps
of Q into itself. Then S̃ is a group for the composition operation. Under the
further assumption that the system is invertible, i.e. that

[(H2)] ∀q ∈ Q, a(Ω̃q) ⊂ S̃ and ∀ω ∈ Ω̃q, ∃ ω̄ ∈ Ω̃q such that a(ω) = (a(ω̄))−1,
we have that Ω̃q and Ω̂q can be both endowed with a group structure. Under
this hypothesis, we write ωω̄ = ω̄ω = ε, so that Aq(ωω̄) = Aq(ε) = q. Hence
Ω̃q (or the quotient of Ω̃q over the corresponding equivalence relation among
multiple possible inverses), is a group. We therefore have that a : Ω̃q → S̃ is a
group homomorphism, and the following holds:

Proposition 1. If a system (Q,U , Ω,A) is externally nonholonomic at q ∈ Q
then a(Ω̂q) $ a(Ω̃q), where the inclusion is a group inclusion.

Notice that the converse of proposition 1 does not hold in general, as shown
in this example, where a(Ω̂q) $ a(Ω̃q) but R(Ω̃q) = R(Ω̂q):

Example 4 Consider a quantized system defined on IR2 by the following con-
trol sets: U1 = {e, u, ū, v} for q ∈ Q1 = {(q1, q2) : q1 ∈ IR, −1 < q2 ≤ 0}
and U2 = {e, w, w̄, v̄}, for q ∈ Q2 = {(q1, q2) : q1 ∈ IR, 0 < q2 ≤ 1},
with A(q1,q2)(ε) = (q1, q2), A(q1,q2)(u) = (q1 + 1, q2), A(q1,q2)(ū) = (q1 − 1, q2),
A(q1,q2)(v) = (q1, q1 + 1), A(q1,q2)(v̄) = (q1, q2 − 1), A(q1,q2)(w) = (−q1, q2) =
A(q1,q2)(w̄). Set q = (0,−1/2), then Ω̂q = {uk1 ūk2 , k1, k2 ∈ ZZ} and Ω̃q = Ω̂1 ∪{
uk1vwk2 v̄ūk3 , k1, k2, k3 ∈ ZZ}, hence a(Ω̂q) $ a(Ω̃q), but R(Ω̃q) = R(Ω̂q) =
{q + (k, 0), k ∈ ZZ}. The above holds true also for the choice q = (k, α), k ∈ ZZ
and −1 < α ≤ 0.

However, the following holds:

Proposition 2. Assume that on [q] it is defined an operation “·”, so that ([q], ·)
is a group, and “·” is compatible with the action of Ω̃q, in the sense that a(Ω̃q) ⊂
{ϕ : [q] 7→ [q] : ∃q1 ∈ [q] s.t. ∀q2 ∈ [q], ϕ(q2) = q1 · q2}. Assume also that
the empty word ε in Ω̃ is the unique element of the isotropy group at q, i.e.
{ω ∈ Ω̃q : Aq(ω) = q} = {ε}, Then, the system (Q,U , Ω,A) is externally
nonholonomic at q ∈ Q if and only if a(Ω̂q) $ a(Ω̃q), where the inclusion is a
group inclusion.

Proof. By the hypothesis we can identify a(Ω̃q) with a subgroup of ([q], ·) and
write Rq(Ω̃q) = a(Ω̃q) · q. Then a(Ω̃q) % a(Ω̂q) if and only if Rq(Ω̃q) % Rq(Ω̂q).



4.2 Internal Nonholonomy

We restrict to driftless invertible systems where the inverse is defined uniquely,
which is tantamount to assuming that Ω̃q is a group. Assume also that Ω̃q is
finitely generated and denote by S = {s1, . . . , sn} a set of generators.

Consider now the subset ΩS
q of simple input words over S, i.e. those strings

that either include a generator, or its inverse, but not both. More precisely, let

Ω̃S
q = {skσ(1)

σ(1) s
kσ(2)

σ(2) . . . s
kσ(n)

σ(n) : σ ∈ P(n), kσ(j) ∈ ZZ, j = 1, . . . , n}

where kσ(i) is the number of times the symbol sσ(i) is used (negative values
meaning that s̄σ(i) is used instead), and P(n) is the set of permutations of
(1, 2, . . . , n). Let Rq(Ω̃q) and Rq(Ω̃S

q ) denote the reachable set from q under
input streams in Ω̃q and in Ω̃S

q , respectively. Definitions we propose to capture
the second type of nonholonomy are then as follows:

Definition 2. A system (Q,U , Ω,A) is said to be noncommutative at q ∈ Q
if Ω̃q contains at least two elements ω1 and ω2 such that for their commutator
[ω1, ω2] := ω1ω2ω̄1ω̄2 it holds Aq([ω1, ω2]) 6= q.
A system is internally nonholonomic at q if there exists a set of generators S

and ω1, ω2 ∈ Ω̃S
q such that Aq([ω1, ω2]) 6∈ Rq(Ω̃S

q ).

Clearly, this definition tends to generalize upon the second observation made in
the introduction about classic nonholonomic systems, i.e. noncommutativity of
vector fields.

The two notions of nonholonomy have a suggestive geometric interpretation
(see fig.3), which is reminiscent of Berry’s phase in quantum mechanics [25].
Berry noticed that if a quantum system evolves in a closed path in its parameter
space, after one period the system would return to its initial state, however with
a multiplicative phase containing a term depending only upon the geometry of
the path the system traced out, or Berry’s Phase. In our setting, consider a local
decomposition ofQ in a base space B and a fiber space F , with B×F = Q. Choos-
ing coordinates q = (qB , qF ) and denoting the canonical projections ΠB(q) = qB ,
ΠF (q) = qF , let B be a maximal codimension set such that ΠF (Rq(Ω̃

[q]
q ) (for ex-

ternal nonholonomy), or ΠF (Rq(Ω̃S
q ) (for internal nonholonomy), are constant.

If there exists an input stream which would steer the system from q to q? with
ΠB(q) = ΠB(q?) but q 6= q?, then the system is nonholonomic at q, and the
difference between ΠF (q?) and ΠF (q) is the corresponding holonomy phase.

As regards tests for checking internal nonholonomy, we notice explicitly that
an equivalent statement of internal nonholonomy is Rq(Ω̃S

q ) $ Rq(Ω̃q). The sit-
uation is quite different from external nonholonomy, though, because the com-
parison among such reachable sets can not be lifted to a comparison among
groups. Indeed, Ω̃S

q lacks a group structure (the composition of simple words is
not simple in general), and, by definition, the group generated by Ω̃S

q is the whole
Ω̃q. In the following, we provide a characterization of internal nonholonomy for
systems of type (3).

We should like first to compare the traditional notions of nonholonomy with
our more general definitions, showing that the former are particular cases of the



Fig. 3. Illustrating the definition of nonholonomic systems

latter. In particular, recall that the smooth, continuous time system

q̇ = G(q)u, q ∈ Q = IRn, u ∈ U = IRm (3)

is nonholonomic in the classic sense iff dim(Lieq) > dim(∆q), where ∆q :=
span {G(q)u : u ∈ U} denotes the distribution generated by G(q, u), while Lieq

is the Lie Algebra of system (3) evaluated at q.

Remark 1. Notice that the classic concept of nonholonomy is intrinsically local,
being indeed equivalent to a notion of small-time local (or local-local) controlla-
bility. Such local character of classical nonholonomy is not reflected in the above
definition of internal nonholonomy, as shown by the example below.

Example 5 Consider the system
[

ẋ1

ẋ2

]
=

[
v w

] [
u1

u2

]
=

[
1
α

]
u1 +

[
1

α + ϕ(q − q̄)

]
u2

with (u1, u2) ∈ IR2 and (x1, x2) ∈ T 2, the two dimensional torus identified with
IR2 quotient the equivalence relation (x1, x2) ∼ (x1 + k1, x2 + k2), k1, k2 ∈ ZZ.
Fix q̄ ∈ T 2, take α a constant α 6∈ lQ, and ϕ(·) a function with ϕ(0) = 0 and
∇ϕ(0) = (0, 1). Observe that [v, w](q̄) = (0, α), thus dim(∆q̄) = 1, dim(Lieq̄) =
2, so the system is classically nonholonomic at q̄.
However the system is not internally nonholonomic. Indeed, taking two genera-
tors that make the system flow along the vector fields v and w respectively, the
set

Rq̄(Ω̃S
q̄ ) =

{
etvesw q̄ : t, s ∈ IR

}

coincide with T 2.

With such a motivation, consider a neighborhood R ⊆ [q] of q, and the set
RR

q (Ω̃S
q ) of configurations reachable from q under input streams in Ω̃S

q , restricted
so that the trajectory from q does not leave R. A system will be said internally



nonholonomic at q with respect to R, if Aq([ω1, ω2]) 6∈ RR
q (Ω̃S

q ). When this holds
for arbitrarily small R, the system is said to be locally internally nonholonomic.

Proposition 3. A smooth, continuous time system (3) which is nonholonomic
in the classic sense, is locally internally nonholonomic.

Proof. Clearly, there is only one equivalence class [q] = Q in this case, and Ω̃
contains all input functions. We assume, without loss of generality (cf. [26]),
that the columns of G are independent and that Ω̃ is comprised of actions
corresponding to piecewise constant functions IR+ 7→ IRm.

A set of generators for Ω̃ can be written as S = (s1, . . . , sm), si = wiei,
where ei denotes the i–th column of the m ×m identity matrix, and wi is the
(δ, τ) window function,

wi(t) =





0, t < 0
δi, 0 ≤ t < τi

0, τi ≤ t.

Notice that both the amplitude δi ∈ IR and duration τi ∈ IR+ of the win-
dow functions in the generators are considered free, hence each generator is a
two-parameter family of finite-support, constant functions. The corresponding
actions are given by

a(Ω̃S
q ) = {eFσ(1)eFσ(2) . . . eFσ(n) , σ ∈ P(n), Fi = τiδiGei,

δi ∈ IR, τi ∈ IR+, i = 1, . . . , n},
where eFj = eτjδjGej is the formal exponential flow along the j-th control vector
field. Therefore, the tangent space to the set of points locally reachable from q
by simple words is given by ∆q. Since there exists a bracket [Gei, Gej ](q) not
contained in ∆q, then the action of the commutator (sisj s̄is̄j) generating this
bracket proves the desired result.

Remark 2. The definition of internal nonholonomy requires the existence of a
set of generators for which the action of commutators can not be obtained by
simple actions. In general, not all sets of generators are suitable to show internal
nonholonomy for a system, as is in general required that the generator set sat-
isfies a minimality condition (this is illustrated in the example 1-iii) in the next
section). We therefore introduce the following

Definition 3. A system of generators S is minimal if #(S) = dim(∆q), where
#(S) is the cardinality of S.

Define a matrix W =
[
W1 · · · Wp

] ∈ IRm×p, with rank(W ) = m, and
consider a quantized input set

U = {0,±W1, . . . ,±Wp} ⊂ IRm. (4)

Proposition 4. The system

q̇ = G(q)u, q ∈ Q = IRn, u ∈ U ⊂ IRm (5)

with dim(Lieq) > dim(∆q), and U a final set as in (4) is locally internally
nonholonomic.



Proof. Again [q] = Q here, and Ω̃ = U∗. Let S = (s1, . . . , sm), sj = Wij
, j =

1, . . . , m, ij ∈ {1, . . . , p}, be a minimal set of generators. Recall the Baker-
Campbell-Hausdorff formula:

etnGWσ(n) · · · et1GWσ(1) =
exp

(∑n
i=1 tiGWσ(i) + 1

2

∑
i<j titj [GWσ(i), GWσ(j)] + o(t4)

)
.

Since the set of generators is minimal, we have that G(q)Wi are independent
vectors. Hence the term

∑
i tiG(q)Wi vanishes only for all ti equal to zero. We

obtain that simple word actions can locally reach points only along the directions
of ∆(q). Since the system is classically nonholonomic there exists a bracket
[GWi, GWj ](q) not contained in ∆q, hence the commutator action generating
this bracket gives the desired result.

We now give some definition and results to provide a partial converse of
Propositions 3, 4. Consider a system described by the dynamics in (5), with
quantized input set.

We need to introduce the following

Definition 4. A system of type (3),(5) is strongly internally nonholonomic if
TqRR

q (Ω̃) % TqRR
q (Ω̃S), where by TqRR

q (Ω̃) (resp. TqRR
q (Ω̃S)) we denote the

tangent space at q to the set of reachable points from q using controls in Ω̃ (resp.
Ω̃S

q ) so that the trajectory from q does not leave a small neighborhood R of q.

We immediately have

Proposition 5. If a system of type (3),(5) is strongly internally nonholonomic,
then it is internally nonholonomic.

Proposition 6. A strongly internally nonholonomic system of type (3) or (5)
is classically nonholonomic.

Proof. The above proposition follows directly from the definition. Indeed, by
absurd, consider a holonomic system, then the flow along any bracket of any
order is given by the flow along some direction in the vector space generated by
the columns of G(q). Then TqRR

q (Ω̃) = TqRR
q (Ω̃S).

5 Examples revisited

Example 1 - i). Internal nonholonomy of this system follows directly shown by
proposition 3. It is interesting however to report a direct constructive proof in
this case, obtained by taking the input construction commonly used in textbooks
to illustrate “lie-bracket motions” (see e.g. [5]). Namely, let S = (s1, s2) with
s1(t) = (δ1 0), t ∈ [0, τ1) and s2(t) = (0 δ2), t ∈ [0, τ2) (hence s̄i = −si, i = 1, 2).
One easily gets Rq0(Ω̃

S) = (x0 + α, y0 + β, z0 − y0α + x0β + αβ) , α, β ∈ IR,
while Aq0(s1s2s̄1s̄2) = (x0, y0, z0 + 2δ1δ2τ1τ2). Hence Aq0([s1, s2]) 6∈ Rq0(Ω̃

S).
Example 1 - ii). Definition (2) equally applies in discrete time. This can

be shown by taking e.g. s1 = (δ1 0), s2 = (0 δ2), so that Aq0([s1, s2]) =



(x0, y0, z0 + 2δ1δ2), while Rq0 is as before. The continuity of the control set
guarantees complete reachability for this system in both the continuous and
discrete time cases.

Example 1 - iii). The restriction on controls does not substantially change the
analysis under continuous time. Indeed, considering s1(t) = (a 0), t ∈ [t1, t1+τ1],
s2(t) = (0 b), t ∈ [t2, t2 + τ2], one gets Aq0([s1, s2]) = (x0, y0, z0 + 2abτ1τ2), and
both nonholonomy and complete reachability easily follow from arbitrarity of
τ1, τ2.

We want to underscore here how a non-minimal choice of generators would
not lead to a conclusion. Take for instance

U = {0,±(1, 0),±(−1/2, 1/2), ±(−1/2,−1/2)} .

The actions corresponding to the above controls give the flows along the vector
fields: v1 = (1, 0,−y), v2 = 1

2 (−1, 1, x + y), v3 = 1
2 (−1,−1, y − x). Moreover the

action corresponding to a simple input stream is given by

et3vσ(3)et2vσ(2)et1vσ(1) = exp
(∑3

i=1 tivσ(i) + 1
2

∑
i<j titj [vσ(i), vσ(j)] + o(t4)

)

where the above equivalence is given by the Campbell-Baker-Hausdorff formula.
Computing the Lie brackets [vi, vj ], i, j = 1, 2, 3 gives

[v1, v2] = (0, 0, 1), [v1, v3] = (0, 0,−1), [v2, v3] = (0, 0, 1),

hence the system is classically nonholonomic. However, this set of generators does
not show internal nonholonomy, since it is possible to reach any point (p1, p2, p3)
in a neighborhood of the origin by the action of a simple input stream. Indeed,
up to higher order terms, it is enough to solve one of the two systems

{
(p1, p2, 0) = t1v1 + t2v2 + t3v3

(0, 0, p3) = t1t2[v1, v2] + t1t3[v1, v3] + t2t3[v2, v3]

or {
(p1, p2, 0) = t1v1 + t2v3 + t3v2

(0, 0, p3) = t1t2[v1, v3] + t1t3[v1, v2] + t2t3[v3, v2]

obtained via simple stream actions for the choice σ = (1) and σ = (23) respec-
tively. From the first system we get

t1 = t3 + p1 + p2

t2 = t3 + 2p2

t23 + 4p2t3 − γ = 0
γ = 2p3 − 2p2(p1 + p2)

while from the second we obtain:

t1 = t3 + p1 − p2

t2 = t3 − 2p2

t23 − 4p2t3 + γ = 0
γ = 2p3 − 2p2(p1 + p2).



Hence at least one of the two systems has a real solution.
Example 1 - iv). In the discrete input, discrete time case, the input commuta-

tor [s1, s2] with s1 = (a, 0), s2 = (0 b), producesAq0([s1, s2]) = (x0, y0, z0+2ab).
Internal nonholonomy is maintained. However, the reachable set from the origin
is only comprised of configurations in a discrete set, R0 = {q : x = `a, y =
mb, z = nab, `, m, n ∈ ZZ}. The situation is completely different, and density
of the reachable set is guaranteed, if e.g. U = {(u1, u2)| u1 ∈ {0, a,−a, c,−c},
u2 ∈ {0, b,−b, d,−d}, a, b, c, d ∈ IR} with a

c , b
d 6∈ lQ.

The interpretation of nonholonomy given in fig.3 applies to all cases above,
using coordinates x, y to describe the base space, while z parameterizes the fiber.

Example 2. Two input equivalence classes are defined in Q as [q]free = {q ∈
Q : y < y0} and [q]engaged = {q ∈ Q : y ≥ y0}. Clearly, Rq0(Ω̂q0) = {(x, y, z) ∈
Q : z = z0}, for all q0 = (x0, y0, z0) ∈ [q]free, while Rq0(Ω̃q0) = IR3. The system
is thus externally nonholonomic according to definition (1).

Interestingly enough, the system is not internally nonholonomic as per defi-
nition (2). Indeed, to generate the set Ω̃q0 , at least two types of streams must be
considered: an internal type e.g. si : (x0, y0, z0) 7→ (x, y, z0), and an external type
(taking the state out of [q]free temporarily), e.g. se : (x0, y0, z0) 7→ (x′, y′, z′).
Clearly, simple streams over this set of generators are sufficient to reach any
configuration of the system (Rq(Ω̃S

q ) = IR3), hence internal nonholonomy does
not apply.

Base variables for this example would be x and y, while z represents the fiber
variable. Rectification of motion is obtained by holonomic phase accumulation
in succesive cycles. By changing frequency and phase of the inputs, different
directions and velocities of the rod motion can be achieved. Note in particular
that input u2 need not actually to be finely tuned, as long as it is periodic, and
it could be chosen as a resonant mode of the vibrating actuator: tuning only u2

still guarantees in this case the (non-local) reachability of the system (cf. [27, 11]).

Example 3: In the rolling polyhedron system let a configuration be described
by the index, position and orientation of the face currently on the plane, as
q = (F, x, θ) ∈ F × IR2 × S1, with F = {F1, . . . , Fn} the set of faces. For each
face is associated to a finite set of adjacent faces, there are n input equivalence
classes given by [q] = {F = Fi, x ∈ IR2, θ ∈ S1}. This system verifies the
hypothesis of proposition 2, because we can identify a class [q] with a subgroup
of isometries of the plane IR2 ⊕ S1. External nonholonomy can be proved quite
straightforwardly in this case by comparing the action of the group Rq(Ω̃q) of
sequences of faces starting and ending with Fi, with Rq(Ω̂q) = ∅.

Internal nonholonomy according to definition 2 also holds: indeed, Ω̃q, the
set of words that bring back the polyhedron on the same face lying on the plane,
is generated (see [28]) by the finite set S = {Rλ, λ = 1, . . . , h − 1}, where Rλ

is a planar rotation of an angle equal to the polyhedron defect angle βλ at the
λ–th vertex, centered at the point corresponding with that vertex in the planar
development of the polyhedron. If βλ/π ∈ lQ for all λ = 1, . . . , h− 1, then Ω̃S

q is
a finite set because, if βλ = 2π mλ

pλ
, Rpλ

λ = (0, 0). Therefore Rq(Ω̃S
q ) is a finite



set. Since Rq(Ω̃q) is an infinite countable set, nonholonomy immediately follows.
If, otherwise, there exists λ such that βλ/π /∈ lQ then there exists another index
λ′, λ′ 6= λ for which it also holds βλ′/π /∈ lQ. Without loss of generality we
can assume λ = 1 and λ′ = 2 and choose the set of h − 1 generators given by
β2, ....βh. In order to prove nonholonmy we have to compare commutators with
translations in Ω̃S

q . Translations in Ω̃S
q are written as R

kσ(2)

σ(2) R
kσ(3)

σ(3) . . . R
kσ(h)

σ(h) , with

kσ(j) = 0 if βσ(j)/π 6∈ lQ. In other words translations in Ω̃S
q have to be generated

only by those generators with λ such that βλ is irrational with π. Now, let t

be any translation in Ω̃S
q . Then the commutator [R2, t] gives a translation of

t(e−β2 − 1) which cannot be generated by simple words.

6 Conclusions

The notions of nonholonomy and reachability are conventionally related to differ-
entiable control systems, and are defined in terms of their differential geometric
properties. However, these notions apply also to more general systems, including
discrete and hybrid systems. In this paper, we have given a generalization of the
concept of nonholonomy to such classes of systems. By studying the intimate
nature of a few carefully chosen examples, we observed two different aspects of
the hybrid nonholonomic phenomenon, which have been captured in the notions
of internal and external nonholonomy. We also provided some tools for inves-
tigating the applicability of definitions to given systems. However, much work
remains to be done in that direction.
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