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Abstract— This paper addresses a security problem in robotic
multi–agent systems, where agents are supposed to cooperate
according to a shared protocol. A distributed Intrusion Detec-
tion System (IDS) is proposed here, that detects possible non–
cooperative agents. Previous work by the authors showed how
single monitors embedded on–board the agents can detect non–
cooperative behavior, using only locally available information.
In this paper, we allow such monitors to share the collected
information in order to overcome their sensing limitation. In
this perspective, we show how an agreement on the type of
behavior of a target–robot may be reached by the monitors,
through execution of a suitable consensus algorithm. After
formulating a consensus problem over non–scalar quantities,
and with a generic update function, we provide conditions for
the consensus convergence and an upper bound to its transient
duration. Effectiveness of the proposed solution is finallyshown
through simulation of a case study.

I. I NTRODUCTION

In the last few years, there has been a great effort to
define decentralized and cooperative control strategies for
applications, such as intelligent transportation, surveillance,
etc., requiring the employment of teams of robots (see e.g.
[1], [2]). The development of such strategies is motivated by
the so–calleddivide et imperaprinciple, according to which
the original problem is reduced to find solutions for sub–
problems of less complexity, and indeed the actions of each
robot can be seen as a partial contribution to solving the
complete problem.

Furthermore, the redundant number of robots allows a
higher level of robustness againstsimple faultsto be reached
e.g. by a possible task–reallocation whenever a faulty robot
is discovered within the system. However, in the absence of a
centralized monitoring infrastructure,byzantine behaviors[3]
of a robot, arbitrarily deviating from the nominal cooperation
strategy, may remain undiscovered for a long time. As a
matter of fact, a malicious robot may “play” with the model
of cooperation and deceive any of its neighbors monitoring
its behavior, by leveraging on their partial knowledge of the
system’s state.

We focus on systems where cooperation is obtained by
sharing a common set of decentralized rulesR, i.e. we
consider systems where each robot plans its motion based
on rules that dictate actions depending on the configuration
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of the robot itself and of its neighbors (see e.g. [4]–[6]).
The challenge in these systems is to find strategies to detect
possible non–cooperative robots, without the use of any form
of centralization. Bearing this in mind, our objective is to
develop asynthesis techniquethat makes it possible to build
a distributed Intrusion Detection System (IDS) [7], [8] for
securing the considered class of robotic multi–agents. The
proposed IDS consists of two main “ingredients”: a decen-
tralizedmonitoring mechanism, by which every robot assigns
all its neighbors with a direct reputation, a measure of their
cooperativeness, and anagreement mechanism, by which all
of such monitors sharing locally collected information can
“converge” to a unique network decision.

The concept ofreputationis normally employed in Peer–
To–Peer (P2P) systems, and in Mobile Ad–hoc NETworks
(MANET), where a form of cooperation is required, e.g.
for establishing a message routing service that enables the
communication among all agents. In these systems — see
e.g. the works of LeBoudec [9], [10] —, each agent assigns
its neighbors with a reputation rate that depends on whether
they display a collaborative behavior, e.g. with respect to
message forwarding. Our problem is different and more
difficult due to the fact that each robot has only partial
knowledge of the system’s state, and thus it can not estab-
lish with certainty whether a given behavior of one of its
neighbors is cooperative or not. The challenge of a robot
acting as a decentralized monitor is indeed to distinguish a
faulty or malicious robot in its neighborhood from a correctly
cooperating robot whose actions may be influenced by other
robots out of the monitor’s range. Furthermore, the fact that
the topology of interaction and exchange of information
among mobile robots is changing and unknown should be
taken into account. These reasons make the problem we deal
with quite distinct from those tackled in the current Security
and Fault Detection [11]–[16] literatures, and indeed a very
challenging one.

In previous work [17], [18], we proposed a scheme by
which each robot can independently establish a reputation
of all its neighbors, using only locally available information.
This paper addresses the problem of reaching an agreement
on such reputations, and indeed the possibility that the mon-
itors share locally collected information is considered. To
achieve this, the florishing literature on distributed consensus
algorithms [19]–[21] represents a quite natural framework
under which the problem should be treated. Indeed, the
system–theoretic approach (used e.g. in Murray’s works) to
represent the dynamic behavior of such algorithms makes it
possible to find useful results on the rate of convergence,



and on the conditions under which an agreement can be
established. However, such algorithms involve the exchange
of scalar quantities and allows the use of very simple rules
only, such as weighted average, to combine measures of
different distributed sensors. In our application scenario,
robots need to exchange locally reconstructed “evidences”
of the reputation of their neighbors that are not scalars, as
it will be discussed afterward, and hence a more complex
combination rule is required. In this vein, the works on
set–membership [22] and the so–called Marzullo’s algorithm
[23] define rules to combine sets or intervals, respectively,
estimated by different sensors. Such works may indeed
provide useful hints to solve our problem. Due to this fact, we
believe that the consensus literature can still be enriched, and
we present a convergence result when more general functions
are used to combine different measures, which may represent
a first step in this direction.

II. H YBRID MODEL OF ROBOTIC AGENTS

The class of robotic systems of interest is represented
by teams of robots that plan their motions according to a
set of decentralized and cooperative rulesR. In particu-
lar, we assume that the setR definesκ possibleactions
Σ = {σ1, σ2, . . . , σκ} that robots can perform, and specifies
ν logical conditionson the state of their neighborhoods
requiring a change of maneuver. LetE = {e1, e2, . . . , eν}
be the set of discrete events associated with such conditions.

For the sake of clarity, consider as an example the case
of n cars moving on a multi–laned highway. Such cars
are supposed to have the same dynamics, and pilots are
supposed to decide the current maneuver based on its goal,
the configurations of the car and of other neighboring cars.
In this example, the actions defined byR are accelerate,
decelerate, and change to the next left or right lane. The
logical conditions for a change of maneuver are represented
by e.g. a slower car in the front, and a free lane on the left
requiring the execution of an overtake.

Robotic systems composed of a physical plant and a
control system implementing such a kind of cooperation rules
R can be modeled as hybrid systems. The components of
such hybrid modelsH are depicted in Fig. 1 and explained in
the following. Letqi ∈ Q be a vector describing the physical
state of thei–th robot and taking value in the configuration
spaceQ, and letσi ∈ Σ be the maneuver that the robot is
currently performing. Thei–th robot’s configurationqi has
a continuous dynamics

q̇i = f(qi, ui) ,

where ui ∈ U is a control input. In particular,ui is a
feedback law generated by a low–level controllerg : Q ×
Σ → U , i.e.

ui = g(qi, σi) ,

so that the robot’s trajectoryqi(t) corresponds to the desired
current maneuverσi. The i–th robot’s current maneuver has
a discrete dynamicsδ : Σ × E → Σ, i.e.

σi
+ = δ(σi, e) ,
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Fig. 1. Depiction of the hybrid model of robotic agents.

wheree is an event requiring a change of maneuver from
σi to σi

+. Event activation is detected by a static mapD :
Q × Qp × Z → E, wherep is the maximum number of
neighbors whose configurations may affect the robot, and
ζi ∈ Z is a parameter that may be reset at any maneuver
transition. MapD encodes conditions such as the presence
of a slower car in the front, and a free lane on the left. The
currently detected event is then

e = D(qi, vi, ζi) ,

wherevi = (qi1 , . . . , qip
) is a vector impiling the configura-

tions of thei–th robot’s neighbors. In conclusion, the hybrid
dynamics of thei–th robot is

qi = H(qi, qi1 , . . . , qip
) ,

whereH : Q × Qp → Q, and i1, . . . , ip are the indices of
its neighbors. Hence,qi1 , . . . , qip

representsH’s input and
qi its output.

III. C ONSTRUCTION OFLOCAL MONITORS FOR

INTRUSION DETECTION

We first give the following
Definition 1: A non–cooperativerobot, or intruder, is a

faulty or malicous robot whose behavior arbitrarily deviates
from the one imposed by the cooperation rulesR.

In practice, thei–th robot is deemed non–cooperative if
its trajectoryq̄i(t) differs from the output̃qi(t) of the hybrid
modelH derived fromR and excited by the configurations
qi1(t), . . . , qip

(t) of its neighbors. In formula, the condition
is the following:

q̄i(t) 6= q̃i(t) = H(qi(t), qi1 (t), . . . , qip
(t)) .

The problem of a roboth acting as a monitor of the
behavior of roboti is due to its partial knowledge ofi’s
neighborhood. In the example in study, some cars affecting
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Fig. 2. Partition of the configuration space due to robot0’s visibility, and
corresponding partition of the input space of robot4.

the behavior of roboti may be out of roboth’s sensing range
since they remain hidden by other cars (see Fig. 2). To model
this, we first partition the configuration spaceQ according
to theh–th monitor’s visibility:

Q = Oobs
h ∪ Ounobs

h ,

whereOobs
h andOunobs

h are the observable and the unobserv-
able regions, respectively, from the perspective ofh. Then,
we canpartition the i–th robot’s input spaceQa(qi) due to
the h–th monitor’s visibility:

Qa(qi) = Qa(qi) ∩
(

Oobs
h ∪ Ounobs

h

)

=
= Qobs

h ∪ Qunobs
h .

The goal of the monitoring roboth is to establish whether
the trajectoryq̄i(t) of robot i is compliant with its partial
knowledge ofi’s neighborhood and the cooperation rulesR.
From a mathematical point of view, we need to solve the
following

Problem 1: Consider the hybrid modelH of a roboti, and
a partitionQa(qi) = Qobs

h ∪Qunobs
h of its input space due to

monitorh. Given the trajectorȳqi(t), andno configurations
q1(t), . . . , qno

(t) of known neighbors inQobs
h , determine, if

it exists, a choice ofp − no configurationsqno+1, . . . , qp in
Qunobs

h such that the expected behavior

q̃i = H(q̄i, q1, . . . , qno
, qno+1, . . . , qp)

equals the given one, i.e.̃qi(t) = q̄i(t).
Solving this problem can be hard due to non–linearities

and differential equations of the hybrid modelH, and it
would require the construction of an “unknown input ob-
server” (UIO) H† of the hybrid model itself, as we have
discussed in [17]. Furthermore, a direct approach for the
computation of such a UIO leads to find ad–hoc solutions
for very specific cases. In contrast, we showed how this can
be avoided and solutions can be found for the considered
class of robotic multi–agent systems. The property that
in our opinion makes our approach appealing is that all
components of the proposed decentralized monitor can be
automaticallygenerated once the dynamicsf of the plant,
and the cooperation rulesR are given. The reader may refer
to our work [17] for a complete description of the method
and can assume the existence of a procedure to build a UIO,
H†, such that

(q̂no+1, . . . , q̂p) = H†(q̄i, q1, . . . , qno
) ,

where q̂l for l = no + 1, . . . , p are estimates ofp − no

configurations of robots inQunobs
h that can “explain” the

behaviorq̄i of the monitored roboti.
In cases where the monitoring roboth has complete

knowledge of roboti’s neighborhood, it will be able to
distinguish a cooperative from a non–cooperative robot, and
accordingly decide on its reputationri

h. Whenever this is
not true, the monitor tries to reconstruct any information
on Qunobs

h according to roboti’s behavior and the partial
knowledge of its neighbors. In these cases, as long as
a choice for q̂l exists, the reputation of roboti remains
“uncertain” (indeed the robot may be correctly following
the cooperation rulesR or not). Otherwise, the reputation
becomes “noncooperative”. In brief, the reputationri

h of
robot i according to roboth is a discrete variable taking
values in the set:

R = {cooperative, noncooperative, uncertain, unknown} .

The introduction of the value “unknown” is instrumental for
the purpose of communication. Indeed, whenever a monitor
robot h does not see roboti, but has to participate in
an agreement on the value of its reputation, will initially
exchange the valueunknown.

We point out that the estimateŝql, for all l, areevidences
or unobservable explanationsthat the monitoring roboth
has derived from the behavior of roboti. Depending on the
existence of such possible explanations, roboth assigns a
neighboring roboti with a suitable reputation value. Fig. 3
shows a simulation run with a non–cooperative robot, vehicle
0 in the figure, that keeps traveling on the second lane,
even though the lane on the right is free. The behavior of
vehicle0 is monitored by its neighbors that reconstruct dif-
ferent estimateŝqno+1, . . . , q̂p of their unobservable regions.
Such estimates are possibly non–convex regions where the
presence of a robot is required (when reported in red) or is
excluded (when reported in green).

IV. OVERCOMING LOCAL MONITORING L IMITATION

THROUGH COMMUNICATION

The second “ingredient” of the proposed IDS is a dis-
tributed agreement mechanismby which monitors share
locally collected information so as to reduce their uncertainty
and eventually “converge” to a unique network decision. The
communication among monitors is indeed necessary since
they can not verify the actual correctness of the reconstructed
hypotheses or explanationŝqno+1, . . . , q̂p on Qunobs

h . More-
over, reaching an agreement is paramount before starting any
emergency procedure whenever a non–cooperative robot is
detected.

A. Consensus algorithms and centralized decision

Consider a piecewise–constantcommunication topology
represented by the undirected graphGc(V, Ec), whereV is
a set of nodes, andEc is a set of edges. The presence of an
edgeei,j connectingvi with vj means that nodevi is able to
share its knowledge with nodevj . Now, we can recall from
e.g. [20] the following



Fig. 3. Simulation run where robot0 is non–cooperative as it keeps
traveling on the second lane, even though the lane on the right is free
(first picture). Monitor robots’ point of views are reportedin the other three
pictures, where red and green colors indicate regions wherethe presence of
a robot is required or is excluded, respectively.

Definition 2 (Consensus Algorithm):Given a setV =
{v1, . . . , vn} of nodes, and a communication graph
Gc(V, Ec), a (distributed)consensus algorithmis an iterative
interaction rule that specifies:

• which informationd ∈ D is shared among neighbors,
• and how each nodevi updates its estimatedi based

on any received valuedj , i.e. which update function
Ω : D × D → D is used to compute

di
+ = Ω(di, dj) , for i = 1, . . . , n .

Let us also define acentralized decisiond∗ as the value
that would be chosen by a hypothetical monitor collecting
all initial measuresd1(0), . . . , dn(0), and combining them
according toΩ. The quantityd∗ can be seen as a result limit-
ing the performance of any distributed computation strategy
as it represents the choice taken without any information
loss. This motivates the effort that is often spent to design
consensus algorithms converging tod∗ (these algorithms are
said to achieve the so–calledf–consensus), irrespectively of
the distributed nature of the computation.

B. Which Information To Share

In our application scenario, nodes inV are robots that
are monitoring acommonneighbor and that are supposed to
communicate as inEc in order to reach an agreement on the
reputation of such neighbor. Consider vector

r(k) = (r1(k), . . . , rn(k))

that is obtained by impiling all monitors’ decisions afterk
steps of a suitable consensus. Our objective here is to design
a distributed consensus algorithm guaranteeing that, for any
initial conditionr(0), we haver(∞) = 1 r∗, wherer∗ is the
centralized decision.

A simple solution where thei–th monitor shares the
locally established reputationri(k) is sufficient to reach
an agreement. To achieve this, well–known consensus al-
gorithms for scalar quantities can indeed be used (see e.g.
[19]–[21]). However, in the majority of the cases, monitors
are likely to have partial knowledge of the monitored robot’s
neighborhood and remain uncertain about its actual behavior.
Then, the whole network of robots will remain uncertain,
except at the occurrence of fortunate cases wheremanifest
faulty behaviors [24] that can trivially be detected.

For this reason, we propose a solution where monitors
share any information that is directly measured or recon-
structed by exploitation ofH†. Namely, each monitorh
shares the following data related to a common neighbori:

ξh
i = {q̄i, q1, . . . , qno

,H†(q1, . . . , qno
)} =

= {q̄i, q1, . . . , qno
, q̂no+1, . . . , q̂p} .

Theoretically, after having established the so–called “same
context” for the value of such a neighborhood, they will
use the same decision rule and hence decide for the same
reputation value.

C. More General Consensus Algorithms

Well–known consensus algorithms are appealing since
they are obtained through very simple combination rules,
such as weighted average, or maximum occurrence value.
However, they are applicable only with scalar quantities,
whereasq̂no+1, . . . , q̂p are possibly non–convex sets or in-
tervals (recall the example of Fig. 3).

Motivated by this fact, we introduce a more general
class of consensus algorithms, partially inspired from the
Computer Science literature (see e.g. Lynch’s works):

Definition 3 (General Consensus Algorithm):Given a set
V = {v1, . . . , vn} of nodes, and a communication graph
Gc(V, Ec), a (distributed)general consensus algorithmis an
iterative interaction rule that specifies:

• which informationξ ∈ Ξ is shared among neighbors,
• how each nodevi updates its knowledgeξi based

on any received valueξj , i.e. which update function
Ω : Ξ × Ξ → Ξ is used to compute

ξi
+ = Ω(ξi, ξj) , for i = 1, . . . , n ,

• and how each nodevi decides on the valuedi ∈ D of
a common quantity of interest for which an agreement
is desired, i.e. whichdecision functionΘ : Ξ → D is
used to compute

di = Θ(ξi) , for i = 1, . . . , n .
From a system theoretic point of view, thei–th node

participarting in the consensus is a discrete sub–system,
whereξi is the state (a.k.a. thecontext), all ξjs are inputs, and
di is the output (a.k.a. the decision) (see Fig. 4). Now the
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Fig. 5. A connected communication graphGc(V, Ec).

centralized decisiond∗ is the value that would be chosen
by a hypothetical monitor collecting all initial measures
ξ1(0), . . . , ξn(0), combining them according toΩ, and then
applyingΘ.

V. ON THE ABSTRACT CONVERGENCE OFCONSENSUS

ALGORITHMS WITH UNCERTAIN MEASURES

Let ξ ∈ IR be a scalar quantity of interest for the network,
and letξ1, . . . , ξn be n elements on aσ–algebraΣ over IR,
representing uncertain estimates of a particular valueξ̄ of
ξ. Consider a consensus algorithm as in Def. 3, and assume
that neighbors of a given communication graphGc(V, Ec)
(as the one of Fig. 5) exchange the estimatesξ1, . . . , ξn, in
order to reach an agreement onξ̄.

It is worth noting that, even though the update function
Ω : Σ × Σ → Σ in Def. 3 may be general, some essential
properties are required to make it alegittimateupdate func-
tion for the distributed algorithm. In particular, we require
that, for anyξ1, ξ2, andξ3,

• Ω(ξ1, ξ2) = Ω(ξ2, ξ1) (commutative);
• Ω(ξ1, Ω(ξ2, ξ3)) = Ω(Ω(ξ1, ξ2), ξ3) (associative).

Indeed, without such assumptions, we have to specify further
constraints concerning how each node updates its knowledge,
and even how the centralized estimate is defined (the order
by which estimatesξjs are considered is important).

In the remainder of this section, we will make a change in
the notation of the update functionΩ to make the exposition
clearer. In particular, in place of the functional notationξ+

i =
Ω(ξi, ξj), we will use an equivalent form involving a binary
operator: ξ+

i = ξi ; ξj . Accordingly, the iterative rule of the
(distributed) consensus algorithm in Def. 3 can be written
as:

ξi(k + 1) = ;j∈Vi(1)ξj(k) , (1)

whereVi(p)
△
=

{

j ∈ V | d(i, j) ≤ p
}

is thecommunication
neighborhoodof orderp of the i–th node inV , andd(i, j) is
the geodesic distance, i.e. the shortest path length, between
i andj (recall thatd(i, i) = 0, ∀i ∈ V ).

First, we give the following

Definition 4: A binary operator; is said to beidempotent
if, and only if, for anyξ ∈ Ξ, it holds

ξ ; ξ = ξ . (2)
Lemma 1:Considern initial estimatesξ1(0), . . . , ξn(0)

that are exchanged between neighbors of a given communi-
cation graphGc(V, Ec) according to a consensus algorithm
as in Def. 3. If the binary operator; in Eq. 1 is commutative,
associative, and idempotent, then it holds

ξi(k) = ;j∈Vi(k)ξj(0) , (3)

for all i and allk.
Proof: Lemma 1 can be proved by logical induction.

Consider the evolution of thei–th agent estimate, starting
from the initial valueξi(0). After one consensus step, we
have

ξi(1) = ;j∈Vi(1)ξj(0) , ∀i ∈ V , (4)

from Eq. 1.
Furthermore, assume that Eq. 3 holds for a certain value

of k. Then, from Eq. 1 and Eq. 2, we obtain:

ξi(k + 1) = ;j∈Vi(1)

{

;m∈Vj(k)ξm(0)
}

=
= ;m∈Vi(k+1)ξm(0) ,

(5)

where the commutative, associative, and idempotency prop-
erties of; have been exploited.

Observe that Eq. 3 holds also fork = 1, as it is shown in
Eq. 4. Then, the general expression forξi(k) in Eq. 3 can
be obtained by induction.

We are now ready to give the main result in the following
Theorem 1 (Abstract convergence):Considern initial es-

timates ξ1(0), . . . , ξn(0) ∈ σ(IR) of a scalarξ ∈ IR, a
communication graphGc(V, Ec), and a legittimate update
function Ω : σ(IR) × σ(IR) → σ(IR) or the corresponding
bynary operator;. The (distributed) general consensus al-
gorithm

ξi(k + 1) = ;j∈Vi(1)ξj(k) (6)

converges to a unique network decision on the centralized
estimate

ξ∗ = ;j∈V ξj(0) , (7)

i.e. ξ(∞) → 1ξ∗, if
• ; is idempotent, and
• Gc is connected.

Furthermore, the convergence is guaranteed in a finite num-
ber of steps̃n given by:

ñ ≤ max
i,j∈V

d(i, j) = diameter(Gc) . (8)

Proof: Sufficiency of the conditions on; can be proved
by observing that, ifn = maxi,j∈V d(i, j), then, since graph
Gc is connected,

Vi(k) = V , ∀k ≥ n , (9)

and, for Lemma 1 and Eq. 7, we have

ξi(k) = ;j∈Vi(n)ξj(0) = ;j∈V ξj(0) = ξ∗ , (10)

for all i ∈ V , and for allk ≥ n. Thus, we obtain the thesis.



Fig. 6. A 2–lane automated highway with a set of common individual
driving rules.

In the example in study, the update functionΩ, or equiva-
lently the operator;, involved in the agreement mechanism
is the set–intersection

⋂

, which satisfies the hypotheses of
Theorem 1. Moreover, the decision functionΘ is the decen-
tralized monitoring mechanism based on the construction of
the UIOH†.

VI. A PPLICATION

A. An Automated Highway

The case study considers a scenario wheren mobile robots
are traveling along a highway with different maximum speed
and may want to reach different desired positions. Robots
are supposed to cooperate according to the common driving
rules (the above setR) in order to avoid collisions. More
precisely, any robot is allowed to perform at any instant one
of the following maneuvers based on logical conditions on its
neighborhood (the associated events are in Table I and II1):

• proceed at the maximum speed along the rightmost free
lane when possible (fast maneuver);

• if a slower vehicle proceeds in front on the same
lane, then overtake the vehicle if the next lane on the
left is free (left maneuver), or reduce the speed (slow
maneuver) otherwise;

• as soon as the next lane on the right becomes free,
change to that lane (right maneuver);

• overtaking any vehicle on the right is forbidden.

Our task is to detect misbehaving vehicles.
The physical state of thei–th robot isqi = (xi, yi, θi, vi)

(refer to Fig. 6) and has the following continuous unicycle–
like dynamicsf :















ẋi = vi cos θi ,
ẏi = vi sin θi ,

θ̇i = ωi ,
v̇i = ai ,

whereai and ωi are linear acceleration and angular veloc-
ities, respectively. According to the setR, the maneuver
σi of the i–th robot may take value on the setΣ =
{fast, left, right, slow} and has the discrete dynamicsδ of
the automaton in Fig. 7, where the low–level feedback con-
troller g ensures that the current maneuverσi is performed.

1Observe thatxj and lj are short–hands forxij
and lij

, being relating
to the j–th neighbor of vehiclei.

ω =

{

Ω if θ < θMAX

0 otherwise

a =

{

A if v < VMAX

0 otherwise

L

ω = −(y − yf ) sin(θ)
θ

v − k v θ

a =

{

A if v < VMAX

0 otherwise

F

ω =

{

−Ω if θ > −θMAX

0 otherwise

a =

{

A if v < VMAX

0 otherwise

R

ω = −(y − yf ) sin(θ)
θ

v − k v θ

a =

{

−A if v < VMAX

0 otherwise

S

e
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i
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F→R
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e
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i
e
R→F
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e
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ie
S→F
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Fig. 7. Discrete dynamicsδ of the automaton, and low–level feedback
control g ensuring that the plantf behaves according to the rule setR.

TABLE I

L IST OF EVENTS FOR VEHICLES MOVING ALONG A2–LANE HIGHWAY

eF→L
i

= (∃ j ∈ Ni | l1(qi, qj)) ∧
∧ (∄k 6= j ∈ Ni | l2(qi, qk)) ∧ ¬ l4(qi)

eF→S
i

= eF→S
i,1

∨ eF→S
i,2

eF→S
i,1

= (∃ j ∈ Ni | l1(qi, qj)) ∧ (∃ k 6= j ∈ Ni | l2(qi, qk))

eF→S
i,2

= (∃ j ∈ Ni | l1(qi, qj)) ∧ l4(qi)

eF→R
i

= (∄j ∈ Ni | l5(qi, qj) ∧ ¬ l3(qi)

eL→F
i

= l4(qi) , eR→F
i

= l3(qi)

eS→L
i

= eF→L
i

, eS→F
i

= (∄j ∈ Ni | l1(qi, qj))

TABLE II

L IST OF LITERALS FOR VEHICLES MOVING ALONG A2–LANE HIGHWAY

l1(qi, qj) = (xj − xi ≤ d) ∧ (xj ≥ xi) ∧ (⌊yj⌋ = ⌊yi⌋)
l2(qi, qj) = (|xj − xi| ≤ d) ∧ (⌊yj⌋ > ⌊yi⌋)
l3(qi) = ⌊yi⌋ = 1
l4(qi) = ⌊yi⌋ = 2
l5(qi, qj) = (|xj − xi| ≤ d) ∧ (⌊yi⌋ > ⌊yi⌋)

B. Consensus Simulation

Consider the following simulation run where robot1 is
non–cooperative since it remains in the second lane, whereas
it should start aright maneuver as the next lane on its right
is free (see Fig. 8–a). Furthermore, assume that the other
robots,2, 3, 4, and 5 in the figure, are acting as monitors
of robot 1 and share their local estimatesξis of vehicle1’s
neighborhood. Assume that communication occurs according
to the following (undirected) graphGc(V, Ec), where isV =
{2, 3, 4, 5}, and Ec = {e2,2, e2,3, e2,5, e3,3, e3,4, e4,4, e5,5}.
Then, for the given communication graphGc, we obtain the
following instanceof consensus algorithm:















ξ2
+(k + 1) = ξ2(k) ∩ ξ3(k) ∩ ξ5(k) ,

ξ3
+(k + 1) = ξ2(k) ∩ ξ3(k) ∩ ξ4(k) ,

ξ4
+(k + 1) = ξ3(k) ∩ ξ4(k) ,

ξ5
+(k + 1) = ξ2(k) ∩ ξ5(k) .

The first column of Fig. 9 is a graphical representation of
the initial estimateŝqno+1, . . . , q̂p of robot1’s neighborhood
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Fig. 9. Consensus run for the given communication graphGc. Robot1’s non–cooperation is detected, and an agreement is reachedon its reputation.

faulty agent

(a) (b)

Fig. 8. Simulation run with a non–cooperative robot (a), andcentralized
decisiond∗ where the non–cooperation is detected (b).

reconstructed by all the monitors. The corresponding central-
ized estimateξ∗ = ξ2(0)∩ξ3(0)∩ξ4(0)∩ξ5(0) is illustrated
in Fig. 8–b, where robot1’s non–cooperation is detected
(the centralized decision is indeedd∗ = noncooperative).
This observation along with the fact that the communication
graph Gc is connected ensure that the same decision can
be reached by the distributed computation (see Theorem 1).
Simulation results are reported in Fig. 9, where thek–th
column shows the monitors’ reconstructed neighborhood of
vehicle 1, after k steps of consensus. Moreover, we can
define relative uncertainty measures of the monitors w.r.t.
the desired centralized estimateξ∗ reported in Fig. 8–b as

µi(k) = µ(ξi(k) \ ξ∗) , for i = 2, 3, 4, 5 ,

where µ is a function that computes the area of the set
received as argument. Such uncertainties converge to0
during the consensus run (see Fig. 10). Finally, robot1’s
non–cooperation is detected, and an agreement ond∗ is
reached for its reputation iñn = 3 steps as expected from
theory (see Fig. 11).

Similar consensus runs can be shown for cooperative
robots, and the agreement on the centralized decision for
the reputation is always achieved. Notwithstanding, thereare
configurations for which it is not possible to distinguish a
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Fig. 10. Convergence of the uncertainty measuresµi(k) = µ(ξi(k)\ξ∗),
for i = 2, 3, 4, 5.
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Fig. 11. Agreement on the centralized estimated∗ for robot1’s reputation.



Fig. 12. Simulation run of a system of vehicles travelling along crossing
paths. Vehicles are supposed to give way to vehicles coming from their right.
In the figure, vehicle0 is monitoring all vehicles that are in line–of–sight
with it and reconstructs information about its unobservable regions.

cooperative from a non–cooperative robot (we omit examples
for space reasons). However, this limitation is due to the
instantaneous distribution of the sensors, and it is not dueto
the consensus algorithm.

Although results have been presented only from the same
case study, the synthesis technique remains valid also for
other multi–robot systems. Indeed, in Fig. 12, a snapshot
from the simulation run of a system of vehicles travelling
along crossing paths is reported. Vehicles are supposed
to give way to vehicles coming from their right. In the
figure, vehicle 0 is monitoring all vehicles that are in
line–of–sight with it and reconstructs information about
its unobservable regions. The reader may refer to the site
http : //www.piaggio.ccii.unipi.it/˜fagiolini/icra2008 for
some relevant videos.

VII. C ONCLUSION

In this paper, we presented work aimed at developing
a synthesis techniquethat makes it possible to build a
distributed Intrusion Detection System (IDS) for securing
a class of robotic multi–agents. The proposed IDS consists
of a decentralizedmonitoring mechanism, by which every
robot assigns all its neighbors with a direct reputation of their
cooperativeness, and anagreement mechanism, by which all
of such monitors sharing locally collected information can
“converge” to a unique network decision. Many problems
remain to be addressed, such as the presence of malicious
monitors sharing false information and thus leading the
system to incorrectly classify any monitored robot.
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