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Abstract— The endpoint stiffness of the human arm has been
long recognized as a key component ensuring the quasi-static
stability of the arm physical interactions with the external world.
Similarly, the understanding of the joint stiffness behaviour
can provide complementary insights, e.g. on the underlying
stiffness regulation principles across different joints including
the nullspace stiffness profiles. Traditionally, the experimental
modelling and estimation of the human arm joint stiffness is
achieved by the transformation of the identified arm endpoint
stiffness to the joint coordinates. Due to the underlying kine-
matic redundancy, the obtained joint stiffness matrix is rank-
deficient which implies that the information in the joint stiffness
matrix is incomplete. While in robotics applications this issue
can be addressed by designing a desired nullspace stiffness
behaviour through appropriate projections, the use of a similar
technique in the identification of human joint stiffness profile
is meaningless. Hence, the first objective of this work is to
address this issue by developing a novel technique to identify
the complete and physiologically meaningful joint stiffness of
human arm. Secondly, we present a model-based online esti-
mation technique to estimate the 7-dimensional complete joint
stiffness in various arm poses and activation levels of the two
dominant arm muscles that correspond to the geometric and
volume modifications of the joint stiffness profile, respectively.

I. INTRODUCTION

With robots increasingly entering our workspaces to
provide daily service and clinical care, effective and intuitive
Human-Robot Interaction (HRI) has become a key component
to enhance their cross-application compatibility. A potential
way to equip the robots with superior whole-body interaction
capabilities is to exploit and integrate the human’s underlying
sensorimotor principles into their mechanical and control
principle designs. In fact, several previous studies in the
field of robot interaction control have been inspired by the
observations in neuroscience and human biomechanics, some
of which can be found in [1]–[3].

The mechanical stability of humans, commonly referred
as the ability to regulate the force-displacement relationship
at contact(s), has been long recognized as a fundamental
component to produce stable and versatile interactions with
uncertain environments [2], [4]. Within this context, a consi-
derable amount of effort has been devoted to investigating
the ability of humans to regulate the arm endpoint stiffness
using pose or muscle activations, with the aim to transfer
the underlying principles during interactions to the robotic or
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Fig. 1: Schematic diagram of the procedure of the proposed online
estimation method for human arm joint stiffness.

assistive platforms [3], [5]. In most cases, the technique for
measuring and quantifying the human arm endpoint stiffness
is to apply stochastic perturbations to the human hand while
measuring the restoring forces, which is followed by a post-
processing step to estimate the stiffness behavior in the
Cartesian space [4], [6].

In addition to the investigation of the role of Cartesian
stiffness in human physical interactions, the analysis of the
joint stiffness behaviour of the human arm can provide
complementary insights into intuitive regulation of the robot
stiffness in the joint coordinates. For example, such principles
can be used to achieve a certain nullspace stiffness profile
in whole body interaction scenarios that involve multiple
contacts between the robot (e.g. humanoid robot, upper body
exoskeleton) and the external environment. A large number
of pioneering studies have been conducted extensively for
identifying the joint stiffness of human arm and understanding
its relationship with the arm posture and the muscle activation
level under different conditions [7]–[9]. However, in almost
all of these researches, human arm was constrained to move
on a horizontal plane with fixed wrist joint in order to simplify
the arm to a 2-DoF planar arm model and avoid the inherent
redundancy problem in the human arm. In this case, the
joint stiffness of human arm can be obtained by simply
transforming the identified Cartesian stiffness to the joint
space (one-to-one mapping), which is infeasible for the 3D
complete and redundant 7-DoF human arm model.

The first contribution of this paper addresses this issue with
the introduction of a novel technique to identify the complete
(∈R7×7) and physiologically meaningful joint stiffness of the
human arm. Consequently and as an extension to our recent
results in online tracking of human arm endpoint stiffness



[5], we propose an online model to estimate the complete
joint stiffness matrix. Specifically, the arm configuration can
be tracked by a motion capture system (MoCap), followed
by an inverse kinematics (IK) algorithm, that computes the
joint angles of the human arm. The joint angles then form
an input for the calculation of the muscle Jacobian, which
accounts for the configuration-dependent property of the
joint stiffness geometry. Meanwhile, the volume-adjusting
component of the joint stiffness is incorporated by the
EMG signals of a pair of dominant forearm antagonistic
muscles, i.e., Biceps and Triceps. A number of trials can
be conducted to estimate a series of realistic joint stiffness
matrices in various arm configurations and co-activation
profiles of the arm muscles by the proposed technique
for the off-line calibration of the joint stiffness estimation
model. Afterwards, the calibrated model can be used for
online estimation of the joint/Cartesian stiffness. The whole
procedure of the method is illustrated in Fig. 1. Such model
can offer deep insights into the underlying stiffness regulation
principles in human arms and provide guidelines both for the
design and control of emerging impedance regulation capable
robotic manipulators/humanoids towards the teleoperation or
autonomous applications of performing whole body physical
interaction tasks.

II. IDENTIFICATION OF THE JOINT
STIFFNESS/COMPLIANCE OF HUMAN ARM

A. Strategy of the identification

The Conservative Congruence Transformation (CCT) from
the Cartesian stiffness, KC, to the joint stiffness, KJ , without
the consideration of the external load can be written1:

KJ = JT (q)KCJ(q). (1)

Using such a technique, the arm stiffness information is
transformed from the Cartesian space (∈ R6×6) to a larger
joint space (∈ Rn×n, n > 6 in redundant cases), therefore
the obtained joint stiffness matrix is rank-deficient which
implies that the information in the joint stiffness matrix is
incomplete. For instance, human arm can be modelled by 7
degrees of freedom (DoF), the derived stiffness information
from a symmetrical 6× 6 Cartesian stiffness matrix is not
sufficient for a complete symmetrical 7× 7 joint stiffness
matrix. The lost 7-DoF (containing 7 independent variables,
due to the symmetric properties of the matrices) information
could be defined as the nullspace stiffness with respect to the
Cartesian stiffness, KN [11].

The design of the nullspace stiffness behaviour in robotics
is achieved by projecting an arbitrary 7×7 stiffness matrix
using a dynamically consistent projector. The goal in such
applications are to perform a secondary task which does
not affect the dynamic behaviour at the end-effector [12].
Therefore, the design of the complete joint stiffness of the
robotic arm can be done by combining the joint stiffness

1The item in CCT, ∂JT (q)
∂q f , capturing the effect of arm geometry in the

presence of external load, f , can be safely neglected since the external force
will not be considered in this paper [10].
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Fig. 2: Two different potential strategies for identifying the joint
stiffness of human arm: (a) the traditional strategy, (b) the proposed
strategy in this paper.

component of (1) and the nullspace stiffness component, KN .
The application of a similar technique to the human arm
will be mathematically meaningful, but will be most likely
to result in wrong and misleading values of the nullspace
stiffness with respect to the Cartesian stiffness of the human
arm, which can be identified through the classical perturbation
experiments [13]. The discrepancy between the robotic arm
and the human arm regarding the stiffness problem is caused
by the fact that the former is a design problem while the latter
is an identification problem. Fig. 2 (a) shows the drawback of
the identification method of the human arm joint stiffness by
using the traditional stiffness transformation (1). Therefore,
one of the main goals in this paper is to develop a novel
technique to identify the actual complete joint stiffness of
the human arm.

To do so, we apply perturbations to the hand in Cartesian
space and observe the effects in joint space. By measuring the
human kinematics during perturbations (e.g. using a MoCap
system and an IK algorithm for calculating the joint angles
of human arm model), we will be able to observe the joint
displacements, dq, directly. Meanwhile, the measured forces
and torques F at hand can be transformed to the joint torques
τ , using τ = JT (q)F , with JT (q) being the arm Jacobian
transpose. Finally, similar to classical techniques [13], the
identification of a joint stiffness matrix, KJe, can be achieved
using dq and τ . It is important to note that the identified
result is not the ground truth of the human arm joint stiffness
since all the input torques are from the range of the transpose



of the Jacobian, R(JT ), which is a subspace of the whole
joint torque space, R7. Due to this limitation, 1-DoF stiffness
information is still lost. Nevertheless, it is worth noting that
the human arm stiffness behavior is observed and identified
in the joint space instead of the traditional Cartesian space
in this way, and the estimate of the joint stiffness is much
closer to the realistic joint stiffness of human arm since
only 1-DoF stiffness information is missing. This 1-DoF
nullspace stiffness, K

′
N is defined as a new nullspace stiffness

with respect to the estimate of the joint stiffness, KJe, which
means the component of the human arm joint stiffness, K

′
N , is

fully decoupled from KJe. Therefore, this technique results in
the identification of the 1-DoF nullspace stiffness K

′
N instead

of the 7-DoF KN . Note that these two nullspace stiffnesses are
defined with respect to different reference stiffnesses, KC and
KJe. Fig. 2 (b) shows the proposed strategy for identifying
the whole joint stiffness of human arm.

Next, for the sake of convenience of expression and
explanation, the compliance terminology will be mainly used
as the dual quantity of the stiffness (compliance is the inverse
of the corresponding stiffness, i.e., CC = K−1

C , CJ = K−1
J ).

Accordingly, the corresponding nullspace compliance C
′
N is

defined as:

CJ =CJe +C
′
N , (2)

and the structure of C
′
N will be explored and investigated.

CJe is the identified joint compliance by using the proposed
method shown in Fig. 2(b) 2. C

′
N is the component which is

not observable when identifying CJe, which means that all the
joint displacement responses of this compliance component,
C
′
N , to the restoring torques caused by the perturbation at

the hand will always be zeros. This fact can be formulated
mathematically as follows:

(CJe +C
′
N)J

T F =CJeJT F (∀F ∈ R6) ⇒
C
′
NJT = O ⇒

(
U1 U2 · · · U7

)


σ1
σ2

. . .
σ7




UT
1

UT
2
...

UT
7

JT = O.

(3)
Since C

′
N is symmetrical, its singular value decomposition can

be expressed as in (3). To make (3) hold for any restoring
force/torque at hand, F , the only way is to make all the
projections of the columns of JT on the eigenvectors (Ui)
corresponding to the non-zero eigenvalues (σi) equal to zeros.
In this case, the only possibly desirable eigenvector is the basis
vector of the nullspace of the Jabocian (N(J)), V . Therefore,
C
′
N can be rewritten as:

C
′
N = σnVV T . (4)

Here, σn (∈ R, considering 7-DoF human arm) indicates
the magnitude of the nullspace compliance, C

′
N , along the

2The identified KJe usually has full rank which is observed and verified
in the real identification results. Therefore, we have CJe = K−1

Je .
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Fig. 3: Explanation on the nullspace compliance of human arm. The
symmetric joint stiffness can be represented by a hyperellipsoid, but
the normal ellipsoid is employed here only for explanatory purpose.

V -direction, which is the lost 1-DoF compliance information
after identifying CJe. Its intuitive meaning is illustrated in
Fig. 3 by reducing the dimension from 7 to 3 for visualization
purpose.

The yellow elliptic cross section in Fig. 3 is the observable
behavior of the joint displacement responses to the constrained
restoring joint torques on the subspace R(JT ) with unit
magnitude. It is the common cross section of all the possible
compliance ellipsoids of human arm with different nullspace
compliance magnitudes (such as the two red ellipsoids and
one blue ellipsoid) 3. This property is reflected by (3)
and (4). Therefore, the whole geometry of the real joint
compliance ellipsoid (the projection of the ellipsoid on N(J)
specifically) can not be observed and determined directly
due to the impossibility of introducing the stimulating torque
components in the V -direction. Accordingly, some special
supplementary experiment needs to be designed to estimate
the only lost compliance information, σn, the nullspace
compliance magnitude along the V -direction, to reveal the
realistic joint compliance:

CJ =CJe +σnVV T . (5)

B. Design of the identification

In this section, a two-stage identification procedure is
designed to estimate the complete joint stiffness of human
arm according to the structure of the joint compliance shown
in (5). To identify σn, the basic idea is to change the structural
property of the human arm in a way that the influence of σn
could flow out to the hand to become observable.

In the first stage, only 1-DoF shoulder-hand rotational
perturbations (rotational displacements with stochastic ma-
gnitudes at hand about the same direction connecting the
center of the shoulder and the point of the hand at which

3The compliance ellipsoid of human arm is generated by all the joint
displacement responses of CJ to any stimulating joint torques of unit
magnitude in the whole space R7.
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perturbations are applied)4 would be applied at the hand of a
subject who wears a wrist brace to fix his/her wrist joint (see
Fig. 4(a)). In the second stage, the full 6-DoF translational
and rotational perturbations will be exerted at the same place,
and the wrist brace will be removed to have the wirst joint
free during this stage (see Fig. 4(b)). The arm posture and the
muscle activation level must be kept consistent in both stages
as much as possible. In fact, the whole identification is a
continuous process. Thirty five seconds (35s) are assigned to
each perturbation stage and 30s are designed between these
two stages as a break period to have the wrist brace removed.

In the second stage, the joint torque, τ , calculated from the
observed restoring 6-dimensional force/torque at the hand,
F , and the observed joint angle displacement, dq, can be
employed to identify CJe in (5) by using a frequency domain
identification technique [13]. The first stage of the perturbation
experiment is actually the supplementary part which is
designed to assist in the identification of the unobservable
nullspace compliance, C

′
N . In this stage, the dimension of

the relevant kinematic Jacobian of the constrained arm, J
′
, is

reduced from 6×7 to 3×5 due to the fixed wrist joint:

J
′
= S1JS2

S1 = [O3×3 I3] S2 = [I5 O5×2]
T ,

(6)

4The reason for the special design is that only 2-DoF motion at hand is
left for the 5-DoF constrained arm, which is caused by the composition of
the arm self-rotation about the shoulder-hand direction and the self-rotation
of the forearm, after the 3-DoF position of the hand is constrained by the
handle, which the hand has to grip firmly for the perturbation experiment.

where selection matrices S1 and S2 are used to select the
first five columns of the orientation part of the original
Jacobian, J, to form the new Jacobian, J

′
. The last two

columns corresponding to the wrist joint are removed in this
case. Om×n means the m× n zero matrix and In indicates
the identity matrix of size n. Meanwhile, the complete joint
compliance of the human arm in the second stage, CJ , is
degenerated into the joint compliance in the first stage, C

′
J , as

below under the assumption that all the factors contributing
to the joint compliance will be kept unchanged:

C
′
J = ST

2 CJS2, (7)

which means all the elements relevant to the wrist joint (the
last two rows and columns) in the original joint compliance
matrix, CJ , will be eliminated by the selection matrix, S2.
With all these changes to the arm kinematic Jacobian and the
arm joint compliance, we could have this relationship:

CCr = J
′
C
′
JJ
′T
, (8)

where CCr is the Cartesian rotational compliance matrix of
the constrained arm in the first stage. Together with (5), (6),
and (7), we have:

CCr = S1JS2ST
2 (CJe +σnVV T )S2ST

2 JT ST
1 . (9)

In this stage, the measured and observed rotational displace-
ment, dXO, and the restoring torques, FO, at hand can be used
to identify the corresponding restoring torque, F̂O, for the
unit rotational displacment, ˆdXO, which is the shoulder-hand
direction. Therefore, we have the following:

ˆdXO = [S1JS2ST
2 (CJe +σnVV T )S2ST

2 JT ST
1 ]F̂O, (10)

and the estimate of the nullspace compliance σne can be
identified by minimizing the Euclidean norm:

σne = argmin
σn

‖ ˆdXO− [S1JS2ST
2 (CJe +σnVV T )S2ST

2 JT ST
1 ]F̂O‖.

(11)
Eventually, the whole joint stiffness of human arm can be
identified and calculated by 5:

KJ = (CJe +σneVV T )−1. (12)

III. JOINT STIFFNESS ESTIMATION MODEL
OF HUMAN ARM

As introduced in the preceding section, the direct way of
estimating the realistic and subject-specific human arm joint
stiffness matrix is a two-phase perturbation-based process.
Nevertheless, such a technique imposes severe constraints to
the limbs, making it not suitable for the online task execution
scenarios. Hence, a model has to be proposed to account
for the identified joint stiffnesses (off-line calibration) and
estimate the different joint stiffnesses in different conditions
in real time (online application).

5Please refer to [11] for the calculation of V .



It is well known that the joint stiffness of human arm is
physiologically produced by the muscle stiffness with the
transformation [14]:

KJ = JT
M(q)KMJM(q), (13)

where the muscle stiffness, KM , is a m×m diagonal matrix,
and m is the number of involved muscles. Each element of
the matrix represents the stiffness of a specific muscle. The
muscle Jacobian, JM , is a matrix of partial derivatives that
relates small muscle length changes with the small joint angle
changes ∂ li(q)

∂q j
, i.e., muscle moment arm:

JM(q) =


∂ l1(q)

∂q1

∂ l1(q)
∂q2

· · · ∂ l1(q)
∂q7

∂ l2(q)
∂q1

∂ l2(q)
∂q2

· · · ∂ l2(q)
∂q7

...
...

. . .
...

∂ lm(q)
∂q1

∂ lm(q)
∂q2

· · · ∂ lm(q)
∂q7

 . (14)

For computing the elements of JM(q), a widely used 3-
dimensional musculoskeletal model is exploited for locating
the relevant muscles [15] as shown in Fig. 5. The configuration
of the model (the set of seven joint angles) can be retrieved
online by an analytical inverse kinematics algorithm [16]
6. Once the configuration is identified, all the muscle path
points can be located correspondingly, and the muscle moment
arms can be calculated numerically or analytically. According
to the suggestion described in [17], 12 principal muscles,
which mostly contribute to the muscle moment arms of
the human arm, are selected: the anterior (DELT1) and
posterior (DELT3) potions of the Deltoid, the long (BIClong)
and short (BICshort) potions of Biceps, Brachialis (BRA),
Brachioradialis (BRD), the lateral (TRIlat) and long (TRIlong)
portions of Triceps, the Supinator (SUP), the Extensor carpi
radialis longus (ECRL), the Flexor carpi radialis (FCR) and
the Pronator teres (PT), which are presented in Fig. 5.

The muscle stiffness matrix KM in (13) is commonly
estimated by using Hill’s activation dynamic model with the
muscle activities as inputs, which are usually measured by the
electromyography signals (EMGs). This, however, requires
that the EMG activities of several muscles are measured, pro-
cessed and fed into a computationally complex and expensive
dynamic system of equations for the implementation [18]. On
the other hand, a dense body of literature gives solid evidence
on the existence of synergistic relationships between the arm
mono- and bi-articular muscle activities which achieve a
coordinated stiffening profile across the arm joints [19], [20],
and as a result of this, strong linear correlations between the
level of the synergistic muscle activities and the volume of
the arm endpoint stiffness can be observed [3].

Based on these observations, to simplify the muscle
activation model, we presume that i) there exists a synergistic
relationship between the arm muscle activities, and ii) each
muscle activation contributes to its muscle stiffness and
the resulting arm stiffness (joint/Cartesian stiffnesses) with

6This can be also realized by the built-in IK in the OpenSim software.
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Fig. 5: Musculoskeletal model of human right arm with principal
muscles and its corresponding kinematic model in the modified
Denavit-Hartenberg notation.
a different ratio. Therefore, a simplified muscle stiffness
estimation model is proposed as below:

KM = accKS
acc = c1 + c2(pB + pT ),

(15)

where KS is a time-invariant diagonal matrix which embodies
the different capabilities of the muscles for generating muscle
stiffness with the same muscle activity. acc is an index to
reflect the level of the synergistic muscle activation. In this
study, as the dominant and easily accessible muscles of the
arm for surface EMG measurements, the EMG activities of the
Biceps pB and Triceps pT are used to estimate acc by formula
(15). The internal constant coefficients c1 and c2, together
with the elements of KS, are identified experimentally during
the off-line calibration phase. Therefore the joint stiffness
estimation model of human arm can be derived by combining
(13) and (15):

KJ = JT
M(q)accKSJM(q). (16)

Needless to say, the simplified joint stiffness model of
human arm is certainly subject to modelling uncertainties
and inaccuracies due to the simplifications in the muscle
stiffness model and the selection of the principal muscles.
However, the main purpose of this research is to provide
a computationally efficient method for online complete
joint stiffness estimation of human arm towards the robotic
applications where the compromise can be tolerated between
the calculation efficiency and the modelling accuracy. This
conception of the arm stiffness modelling was already proved
to be feasible and effective in our previous work [5], [21].
Compared to our previous work, the arm stiffness estimation
model is extended from the Cartesian space to the joint
space in order to preserve full arm stiffness information.
Accordingly, more muscles, especially the muscles spanning
more than one joint, are added into the musculoskeletal model
to try to interpret the identified joint stiffnesses better.



IV. EXPERIMENTS ON HUMAN ARM JOINT STIFFNESS

A. Experimental procedures

This section describes the procedure to identify the para-
meters in the joint stiffness estimation model, which are 12
elements in KS, and c1 and c2 in acc.

KJ is measured and identified by the two-stage perturbation
experiment introduced in Section II. In the first stage of the
experiment (Fig. 6 (a)), after locating the shoulder base frame
by the OptiTrack motion capture system, the 1-DoF rotational
perturbations, dXO, about the shoulder-hand direction were
applied by a KUKA lightweight robot IV under position
control mode to the human hand and the 3-dimensional
restoring torques, FO, were recorded using a 6-axis F/T sensor
(ATI Inc.), which was placed between the robot and the
handle. In this stage, a wrist brace (ORTHOSERVICE Inc.)
was employed to fix the wrist joint. In the second stage
(Fig. 6 (b)), the 6-DoF stochastic translational and rotational
perturbations were simultaneously applied by the KUKA
robot at the same place with the same arm configuration.
The 6-dimensional restoring forces and torques, F , were
recorded and transformed into the joint space to calculate
the corresponding joint torques, τ . The joint displacement,
dq, was observed by the OptiTrack. In this stage, the wrist
brace was loosened and pulled a little upward to have the
wrist joint completely free. Throughout the whole two-stage
identification process, the mean of two processed EMG signls
from Biceps and Triceps, (pB + pT )/2, was displayed back
to the subject to help him/her sustain the muscle activation
level as steady as possible. By using the method proposed
in Section II, the complete joint stiffness of human arm, KJ ,
can be estimated.

To identify the internal parameters of the joint stiffness
estimation model of human arm, KJ must be identified in
different arm configurations and muscle activation levels. The
two-stage identification experiment was carried out in eight
different positions of the hand w.r.t the shoulder base frame
(see typical example in Fig. 6 (d)). These positions were
chosen anterior to the coronal plane of the body, within
a reasonable workspace of the human arm while avoiding
singular configurations and joint limits. In each hand position,
arm joints were allowed to vary within the redundant manifold
of the corresponding shoulder-hand position to achieve three
distinct elevation angles of the elbow joint (see typical
example in Fig. 6 (c)), resulting in 24 arm configurations
in total. At each configuration, the subjects were asked to
modulate and keep the activation of the arm muscles in three
different levels: minimum-activity, medium and high (see
details at [5], [22]).

In the end, all the identified complete joint stiffness
matrices in different arm configurations and muscle activation
levels during the off-line calibration phase were used to
estimate KSe, c1e, and c2e by minimizing the sum of the
ratios of the Frobenius norms:

argmin
KS,c1,c2

nC

∑
i=1

‖Ji
M

T ai
cc(c1,c2)KSJi

M−Ki
J‖F

‖Ki
J‖F

, (17)
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with Ji
M ∈ R12×7, KS ∈ R12×12 and Ki

J ∈ R7×7. The total
number of the trials was divided into the calibration trials
(nC) and the test trials (nT ) for the validation of the identified
model. Once the model parameters are identified, (16) can
be utilized for the online estimation of the arm joint stiffness
profile using EMG signals of one antagonistic pair of muscles
and the tracking of the arm configuration. In addition, the
Cartesian stiffness can be also estimated online easily by
using the transformation, KC = (JKJ

−1JT )−1.

B. Results
The results of the off-line calibration and the online joint

stiffness estimation model for two healthy subjects (male,
ages: 33 and 35) are presented in this section.

1) Identification of Complete Joint Stiffness: In all trials,
the positive definiteness and symmetric measures of the
estimated stiffness/compliance matrices were employed to
evaluate the results [5], [13]. Those trials which did not satisfy
the above conditions were discarded and repeated.

For better visualization and understanding, the identified
joint stiffness from the second stage, KJe , and the identi-
fied complete joint stiffness, KJ , are divided into several
3-dimensional submatrices and subvectors as follows:

K =

Kss 3×3 Kes 3×1 Kws 3×3
Kse 1×3 Kee 1×1 Kwe 1×3
Ksw 3×3 Kew 3×1 Kww 3×3


7×7

, (K = KJe or KJ).

(18)
It is known that the first three joints of the human arm
model are relevant to the physiological shoulder joint (s),
and the last three joints can be grouped and considered to be
the physiological wrist joint (w), and the remaining fourth
joint is the physiological elbow joint (e) 7. Therefore, the 3-
dimensional matrix components, Kss and Kww, and the scalar,

7The one degree of freedom of the forearm Pronation/Supination of the
elbow can be considered to belong to the wrist joint for better expression.
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Fig. 7: A visualization example of the identified joint stiffnesses from
the proposed two-stage identification method. (a) Identified joint
stiffness in the second stage only, KJe . (b) Estimated complete joint
stiffness from the whole two-stage procedure, KJ . Pink (shoulder),
light blue (elbow), and golden (wrist) line segments stand for featured
directions of the identified stiffness components which reflect the
effects of the shoulder, elbow, and wrist joints on all the physiological
joints respectively. The scalings of the line segments at the shoulder,
elbow, and wrist joints are 0.008, 0.008, and 0.024 respectively.

Kee, in (18) mean the relative rotational stiffnesses of the
shoulder, wrist, and elbow joints respectively (single-joint
stiffnesses). The rest of the components reflect the cross
coupling effects between different physiological joints (cross-
joint stiffnesses). The scale of Kee can be described by the
length of a line segment aligned with the rotational axis of the
elbow. Kss and Kww can be expressed by their eigenvectors
which reveal the featured directions that one needs to make
maximum, intermediate, or minimum effort (torque) to move
the shoulder or wrist joint about. However, it is worth noting
that the eigenvectors of Kss or Kww are expressed in the
joint space which need to be transformed to the Cartesian
space for visualization. Assume α i

ss and α i
ww (i = 1,2,3) are

the eigenvectors of Kss and Kww respectively, they can be
transformed by:

ᾱ i
ss = Jsα

i
ss

¯α i
ww = Jwα i

ww,
(19)

in which ᾱ i
ss and ¯α i

ww are the expressions of the eigenvectors
in Cartesian space. Js and Jw consist of the first three columns
and the last three columns of JO respectively, which actually
stand for the rotational axis directions of the first three
and the last three joints. Through the vector composition,
the featured directions of Kss and Kww can be visualized
in Cartesian space. Similar operations can be also applied
to the remaining components in (18) 8. Fig. 7 illustrates
an typical example of the identified joint stiffnesses of the
human arm of subject A at the configuration shown in Fig.
6 (a). Fig. 7 (a) visualizes all the featured directions of
the identified KJe from the second stage, while Fig. 7 (b)
visualizes the counterpart of the complete joint stiffness KJ
calculated from (12) after estimating the nullspace compliance

8It is important to note that the input and output vectors of the off-diagonal
submatrices in (18) are from different joint subspaces. For example, the
input vector of Kws is from the subspace spanned by q5, q6, and q7 and
its output vector belongs to the subspace spanned by q1, q2, and q3. In
this case, the expressions of the eigenvectors of Kws in Cartesian space
are actually the eigenvectors of the matrix, JsKwsJ−1

w , which indicate the
directions about which the wrist would induce the maximum, intermediate,
or minimum resistance from the shoulder if one moves the wrist.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

DELT1

DELT3

TRIlong

TRIlat

BIClong

BICshort

BRA

BRD

SUP

PT

ECRL

FCR

Subject A Subject B

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

DELT1

DELT3

TRIlong

TRIlat

BIClong

BICshort

BRA

BRD

SUP

PT

ECRL

FCR

Subject A Subject B

(S)

(S)

(S E)

(E)

(S E)

(S E)

(E)

(E)

(E)

(E)

(E W)

(E W)

Fig. 8: The distribution chart of the identified stiffnesses (normalized)
of the twelve involved arm muscles for subjects A and B. The letters
in the parentheses represent the corresponding physiological joints
which the muscle spans.

from the optimization (11) (σne =−3.953(unit:Nm) in this
case). Pink (shoulder), light blue (elbow), and golden (wrist)
line segments reflect the effects of the corresponding joint on
all the physiological joints. For instance, the featured pink
vectors of Kss, Kse, and Ksw are placed at the shoulder, elbow,
and wrist joints respectively to reflect the single-joint and
cross-joint stiffnesses of the shoulder. Note that those line
segments of eigenvectors are usually not orthogonal due to
the space transformation. Some obvious difference between
the two identified joint stiffnesses can be observed in Fig. 7.

2) Online Joint Stiffness Estimation: In a post processing
phase, to evaluate the accuracy of the identified model
parameters, the group of test trials (nT ) were used to calculate
the average error value between the desired joint stiffness Ki

J
identified from the two-stage experiment and the estimate of
the online model receiving the same arm configuration q and
the muscle activation level p by using:

eT =

nT
∑

i=1

‖Ji
M

T
(q)ai

cc(c1e,c2e,p)KSeJi
M(q)−Ki

J‖F
‖Ki

J‖F

nT
, (20)

which led to the values of 19.8% and 21.6% for subjects A
and B respectively. The error is believed to be mainly caused
by the simplification in the arm musculoskeletal model. For
example, none of the chosen muscles can account for the
cross-coupling effects between the shoulder and the wrist,
which were observed in our experiments. According to our
joint stiffness estimation model (16), the size of the joint
stiffness is mainly determined by the index, acc, (describing
the muscle activity) and the size of each element in KS, and
the orientation or pattern of the joint stiffness is regulated by
the arm configuration, JM , and the direction of the identified
muscle stiffness index vector, Ks(KS = diag(Ks)). In order
to visualize the direction of the vector, we can have:

K̂A
s = KA

s /‖KA
s ‖, K̂B

s = KB
s /‖KB

s ‖, (21)

where the superscript indicates the corresponding subject.
The normalized vectors, K̂A

s and K̂B
s , can be shown in radar

chart in Fig. 8, which reflects the stiffness distribution among
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Fig. 9: Online estimation of human arm joint stiffness of subjects A and B at three different configurations (the configurations of the two
subjects in each group are very close but not exactly the same). Upper pictures show the real configurations of the human arms. The lower
diagrams display all the related featured vectors of the estimated joint stiffness matrices for the corresponding arm state shown above. The
scalings of the vectors at the shoulder, elbow, and wrist joints are 0.004, 0.004, and 0.012 respectively for better visibility.

different muscles in two subjects. The angle between these
two unit vectors is 25.03◦ (arccos(K̂A

s
T

K̂B
s )). This result

implies that the distribution of the arm muscle stiffnesses
of healthy subjects tend to have the similar “pattern” (this
preliminary result will be further evaluated on more subjects).
The pattern reflects muscular synergies in stiffness coordina-
tes which was suggested by some early work as well [9], [19].
The similarity of the identified unit muscle stiffness vector,
K̂s, would make the resultant joint stiffnesses of different
subjects at the same configuration have the similar “shape” as
well. Fig. 9 illustrated the estimation results of the calibrated
online models at three different arm postures for the two
subjects (see attached video for details).

V. CONCLUSIONS

In this paper, we introduced a novel method to online
model and estimate the complete human arm stiffness.
Such a method can be used not only to monitor the arm
stiffness with direct application to teleoperation control but
also to study and extract the principles behind stiffness
regulation in humans to guide the designs of the autonomous
stiffness regulation controllers for robots executing whole
body physical interaction tasks, which is our furture work.

The limitation of the proposed two-stage identification
method is that the joint stiffness at the configurations with
large Flexion/Extension and/or Adduction/Abduction angle(s)
of the wrist can not be identified due to the fixation operation
of the wrist in the first stage of the identification.
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