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Abstract

In this paper we consider the controllability problem for a system consisting of a
pair of Dubins vehicles moving in a 3D space (i.e. pair of 3D–Dubins vehicles)
while maintaining constant distance. Necessary and sufficient conditions for the
existence of a limited control effort to steer the system between any two con-
figurations are provided. The proposed controllability analysis and the developed
motion planning algorithm are a step toward the solution of planning problems for
example in case the robots are physically constrained to a payload to be deployed.
Moreover, results obtained in this paper are relevant in order to solve formation
control problems for multiple robots as aerial or underwater vehicles, which move
in 3D spaces. Simulation results highlight the sufficiency of the obtained condi-
tions showing that even from critical configurations an admissible control can be
determined.

Keywords:
Controllability, vehicle formation, 3D planning, nonholonomic vehicles

1. Introduction

Motion planning algorithms have been actively studied in the literature and
there are several methods based e.g. on visibility graphs, potential field techniques
or randomized sampling (see [1] and references therein). Several challenges may
arise including issues related to nonholonomic and dynamic constraints, modeling
uncertainty, noisy models, partial sensory data, and real–time computation.
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Motion planning becomes particularly difficult and interesting (see e.g. [2])
when physical robots have to perform tasks in a truly 3D environment avoiding
static or dynamic obstacles such as in disaster sites, underwater and aerial environ-
ments. In such scenario, multi–robot systems can perform tasks more efficiently
than a single robot or can accomplish tasks not executable by a single one. More-
over, multi–robot systems have advantages, e.g. providing flexibility to the task
execution by exploiting distributed sensing and actuation. Also in nature, sev-
eral types of animals, such as insects, birds, or fishes, aggregate together, moving
en masse or migrating in some directions, also known as swarm behavior. The
term shoaling or schooling is used to refer specifically to swarm behavior in fishes
which derives many benefits including also the increased hydrodynamic efficiency
(cf. [3]).

The cooperation and coordination of multi–robot systems (i.e. formation con-
trol) has been object of considerable research efforts (see [4] for a detailed re-
view and references therein). Formation control studies the problem of control-
ling multiple robots with different kinematics and sensory equipment so that they
can maintain some given configuration constraints (e.g. distances) while moving
as a whole group [5, 6, 7]. Many approaches of formation control have been pro-
posed, such as behavior–based methods [8], leader–follower strategies [9], [10]
and virtual structure approaches [11]. Various kinds of nonholonomic vehicles
have been considered, such as ground vehicles (e.g. in [12]), aircraft (e.g. in [13])
and underwater vehicles (e.g. in [14]).

In order to solve challenging problems as motion planning algorithms and
formation control as well as to plan optimal trajectories, it is important to analyze
and prove the controllability of the system. A system is completely controllable if,
for every pair of points q1 and q2 in the configuration space, there exists a control
that steers the system from q1 to q2, [15, 16].

Unlike other approaches, the analysis of a tight constraint on the distance to
be maintained is herein considered. There are several application scenarios in
which the motion of the robots can be physically constrained due to a load of
large dimensions to be deployed. For example refer to [17], [18] or to [19] where
a group of quadrotor rigidly attached to a payload is considered. Other examples
of those type of applications can be found in the aerospace robotics such as the
JPL’s Robot Colonie project where two rovers must transport a large box [20] and
in underwater cooperative manipulation systems [21].

Beside the applications, the problem has several interesting theoretical aspects
among which the control input set depends on the system configurations and clas-
sical controllability results can not be directly applied. Moreover the high di-
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mensional system is controlled by constrained 3-dimensional controls, and the
range of admissible controls depends on the configuration variables. The solution
of such constrained problems is also crucial for the solution of optimal control
problems in which a minimum safety distance must be guarantee during motion.
Indeed, the optimal solution consists also of arcs along which the robot travel at
constant distance, see e.g. [22].

In [23] the controllability of different pairs of identical nonholonomic vehicles
(e.g. differential drive and car–like vehicles) moving in a plane while maintain a
constant distance has been proved. Results obtained have then been used in order
to prove the controllability and design a motion planning algorithm for formations
of planar Dubins vehicles, [13, 24].

In this paper our purpose is to extend results of [13] to a system consisting
of a pair of 3D–Dubins vehicles moving in a 3D space while maintaining con-
stant distance. Extension to the 3D case is not straightforward due to a more
complex vehicle model and thus maneuvers between configurations must be ac-
cordingly computed. This paper completes our previous conference paper [25]
which furnishes only sufficient conditions for controllability. Here we provide a
more restrictive condition that is proved to be both necessary and sufficient. Fi-
nally, a motion planning algorithm to drive the considered system between initial
and final configuration that verify the necessary and sufficient condition.

The paper is organized as follows. In Section 2 the model of two three dimen-
sional Dubins vechiles are presented with the inputs and distance constraints to be
verified. In Section 3 the effects of the controls on the system are evaluated in or-
der to simplify the controllability analysis performed next. In Section 4 necessary
conditions for the system controllability are obtained in terms of system internal
configurations. In Section 5 several basic movements and associated control laws
are obtained. Such movements are then combined to steer the system between
any two configurations as described in Section 6. The necessary conditions are
thus proven to be also sufficient for controllability if verified by the initial and
final configurations. Finally, simulations results to highlight the verification of the
constraints and the system’s behaviour under the proposed controls is reported in
Section 7.

2. Problem definition

Consider a nonholonomic vehicle moving in a three dimensional space and
let 〈W 〉 = (Ow, Xw, Yw, Zw) be a fixed reference frame. In 〈W 〉, the vehicle con-
figuration is ζ (t) = (x(t), y(t), z(t), ϕ(t), ψ(t)) where q = (x(t), y(t), z(t)) is the
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Figure 1: A single 3D–Dubins vehicle. The configuration ζ of the vehicle is described by three
position variables x, y and z and two angular variable: ϕ is the angle formed by the vehicle heading
and the plane Xw×Yw and ψ is the angle formed by the projection of the vehicle heading on the
plane Xw×Yw and Xw axis. The control inputs are the forward velocity ν = 1 and the angular
velocity ω .

position in 〈W 〉 of the reference central point in the vehicle, ϕ(t) is the angle
formed by the vehicle heading and the plane Xw×Yw and ψ(t) is the angle formed
by the projection of the vehicle heading on the plane Xw×Yw and Xw axis (see
Fig. 1).

Given the forward velocity v of the vehicle, the velocity vector v in 〈W 〉 is v =
(vcosϕ sinψ, vcosϕ cosψ, vsinϕ)T . The kinematic model of the nonholonomic
vehicle is (for the vehicle model for more details please refer to [26, 27]){

q̇ = v
v̇ = v×ωωω

(1)

where ωωω = (ψ̇, ϕ̇ sinψ,−ϕ̇ cosψ)T .
In this paper we consider the 3D–Dubins system that is described by system

(1) subject to a constrained control effort |ωωω| ≤ ωM. Moreover, without loss of
generality, we consider v = 1. In such conditions, a 3D–Dubins generates trajec-
tories with bounded curvature, as the minimum radius is r = v

ωM
.
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Figure 2: A pair of 3D–Dubins vehicles in formation. The relative configurations between the
vehicles and/or the vector D are defined by variables σi, i = 1,2 and θ where σi ∈ [0, π/2] is the
angle between vi and D (i = 1, 2) while θ ∈ [0, π] is the angle between the projections of v1 and
v2 on the plane orthogonal to D. The control effort ωωω i is decomposed in ωωωdr and ωωωr,i (see (12)).

Remark 1. For reader convenience we recall that the classical Dubins car is basi-
cally a unicycle vehicle moving on a plane with a constant positive forward veloc-
ity (usually normalized to 1) and a bounded angular velocity. The 3D-Dubins car
here introduced is a generalization of the classical one to move in a 3D space. For
detailed discussions on the model, the constraints, the controllability properties
and optimal control results please refer to [28, 29, 30] and references therein.

Consider now the system consisting of a pair of 3D–Dubins constrained to
maintain constant the magnitude D of the distance vector D joining the centers of
the two robots. The system is hence given by

q̇1 = v1
q̇2 = v2
v̇1 = v1×ωωω1
v̇2 = v2×ωωω2

. (2)

subject to the constraint of a constant magnitude of vector D= q2−q1 and limited
control efforts

|ωiωiωi| ≤ ωM. (3)
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In Fig. 2 the position (qi), forward (vi) and angular (ωωω i) velocity vectors of
vehicle i, i = 1, 2 are reported. Since the amplitude of vectors vi is assumed
constant, the velocity vectors are univocally determined by angles σi and θ where
σi ∈ [0, π/2] is the angle between vi and D (i = 1, 2) while θ ∈ [−π, π] is the
angle between the projections of v1 and v2 on the plane orthogonal to D. Notice
that, when σi, i = 1, 2, is zero the velocity vector vi is aligned with D and θ is not
defined. With an abuse of notation, in this case we define θ = 0.

The relations between variables σi and θ and the system states vi can be ob-
tained through the projections vi⊥ of the velocities onto the plane orthogonal to
D:

vi⊥ = vi−
1

D2 (v
T
i D)D for i = 1, 2. (4)

Indeed, we have
σi = arccos

vT
i D
D

θ =

 arccos
vT

1⊥v2⊥
‖v1⊥‖‖v2⊥‖

, ‖vi⊥‖ 6= 0

0, ‖vi⊥‖= 0

, (5)

From geometrical considerations, it can be seen that ‖vi⊥‖= sinσi, i.e. ‖vi⊥‖ 6= 0
if and only if σi 6= 0.

The goal of the paper is to solve the

Problem 1. Given initial and final configurations of system (2), determine nec-
essary and sufficient conditions for the existence of control inputs that steer the
system while guaranteeing the distance constraint.

3. Controls and configurations constraints

To solve Problem 1 we are interested in determining the conditions on the con-
trol inputs and the states of the system that satisfy the constraint on the magnitude
of vector D during the system evolution. In other words, we want to determine
the controls that keep constant the magnitude of vector D = q2−q1 for any con-
figuration of the vehicles. For this purpose we will decompose the control vectors
ωωω i into components of which some will be constrained to maintain the distance
while other will be determined to steer the system without violating the control
effort constraint.

6



Remark 2. In order to maintain constant the magnitude D of D it must necessarily
hold the relation

σ1 = σ2 , σ , (6)

Indeed, velocity vectors v1 and v2 must have equal components along the vec-
tor distance D to avoid variations of its length. Hence, it must hold v1 cosσ1 =
v2 cosσ2. Thus, as v1 = v2 = 1 and σi ∈ [0,π/2], it is necessary to have σ1 = σ2.
Hence, in the rest of the paper we will consider only configurations with σ1 =
σ2 = σ .

As a consequence, variables σ and θ denote the relative configurations of the
vehicles. Notice that, given v1, the internal variable σ1 = σ can be computed
through the first equation in (5). Once θ is known also the vector v2 can be
obtained.

The variation of D, Ḋ = v2−v1, must be orthogonal to D itself to guarantee a
constant magnitude D, i.e. it holds

DT (v2−v1) = 0, (7)

The variation Ḋ of D can be written in the form Ḋ = D×ωωωdr where ωωωdr is the
angular velocity of D (see Fig. 2). Hence, ωωωdr is characterized by the relation

D×ωωωdr = v2−v1. (8)

It is worth noting that being ωωωdr an angular velocity, it does not change the
magnitude D of D. Moreover, the component of ωωωdr along D, represents a rigid
rotation of the formation with respect to D itself. Hence, it does not affect the
vehicles’ relative configurations σ and θ . Such effects of the angular velocity
ωωωdr will be used next to determine the elementary maneuvers that will be used to
prove controllability. Indeed, it holds

Proposition 1. Applying controls ωωω1 = ωωω2 = ωωωdr, σ1 = σ2 = σ and θ are con-
stant during system evolution. Indeed, the same rotational velocity is applied to
v1, v2, and D, making the system rotating as a whole, and keeping the internal
configuration constant.

A formal proof can be found in Appendix 10.1. As a consequence of previous
Proposition, we may assume

ωωω
T
drD = 0. (9)
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Thus, considering (8) and (9), (v2−v1)×D= (D×ωωωdr)×D=−(DTωωωdr)D+
D2ωωωdr hence

ωωωdr =
(v2−v1)×D

D2 . (10)

In terms of θ and σ , from (8) and (10), it holds

ωdr =
|v2−v1|

D
=

2sin θ

2 sinσ

D
. (11)

Moreover, from (8), the vector ωωωdr is orthogonal to v2−v1, i.e.

ωωω
T
drv1 =ωωω

T
drv2

As a consequence the projection of ωωωdr and of vi along the plane orthogonal to D
form an angle θ/2, see Fig. 3.

The control vectors ωωω i can be both written in terms of ωωωdr as

ωωω i =ωωωdr +ωωω r,i, (12)

where ωωω r,i is the relative control that it is not necessarily orthogonal to ωωωdr. More-
over, ωωωdr represents the component of the control that is common to both vehicles,
it depends on the system configuration and hence it can not be chosen arbitrarily.
In the following we will refer to ωωωdr as the dragging control component. The as-
sumption of orthogonality of the dragging control and the distance vector, in (9),
is not restrictive since the parallel components of the angular velocity of D can be
included in ωωω r,i.

The distance constraint limits admissible configurations and controls that can
be imposed to vehicles. Once the control is decomposed in the relative and drag-
ging control components, the distance constraints does not depend on ωωωdr, indeed
it holds

Proposition 2. Necessary conditions on system configurations and controls to
guarantee the distance constraint (7) are σ1 = σ2 , σ , and

DT (v1×ωωωr,1) = DT (v2×ωωωr,2). (13)

Proof. Taking the time derivative of (7) and using (12) we have

(ω̂drD)T (v2−v1)+DT ω̂dr(v2−v1)+
DT (ω̂r,2v2− ω̂r,1v1) = 0. (14)

where ω̂dr is the skew-symmetric matrix associated to the cross product, i.e. v×
ωωωdr = ω̂drv. The first two addenda of (14) cancel out leading to DT ω̂r,2v2 = DT ω̂r,1v1,
hence the thesis.
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Remark 3. While the control component ωdr can not be arbitrarily chosen, the
component ωωωr,i is determined taking into account the constraints (3) and (13) to
guarantee a limited control effort and a fixed distance between vehicles respec-
tively. The choice of ωr,i thus depends on the current configuration.

In order to increase the range of choices for input components ωωω r,i it is possible
to reduce the dragging control component as described next.

It is worth noting that a rotation of vi along their axis, due to a non zero com-
ponent of ωωω i along vi, does not influence the internal variables θ and σ and hence
it does not violate the distance constraint. Indeed, according to the considered
model, all the rolling maneuvers of the vehicles does not modify the distance and
hence can be neglected since the goal of this paper is to determine controls that
steer the system among configurations without violating the distance constraint,
i.e. a theoretical controllability result. However, such maneuvers can be exploited
to compute and simplify the formation trajectories.

As a consequence, the component of the dragging control along vi can be
disregarded, while the orthogonal ones are

ωωω
⊥
dr,i =ωωωdr− (ωωωT

drvi)vi, i = 1, 2, (15)

whose magnitudes are equal and, based on geometrical considerations, are

ω
⊥
dr =

sin
(

θ

2

)
sin(σ)

√
−2cos(θ)sin2(σ)+ cos(2σ)+3

D
.

In the particular case θ = π , ω⊥dr = ωdr.
From Remark 3, to have the maximum range of choice for the magnitude

of the relative controls, it is convenient to choose also ωωω r,i orthogonal to vi for
i = 1, 2 as follows. Let û̂ûui be the unit vectors directed as the dragging controls,
i.e. ωωω⊥dr,i = ω⊥drû̂ûui, and û̂ûuT

i vi = 0, and let the unit vectors ŵ̂ŵwi = û̂ûui× vi, see Fig. 3.
Relative controls can hence be decomposed along û̂ûui and ŵ̂ŵwi:

ωωω r,i = ur,iû̂ûui +wr,iŵ̂ŵwi. (16)

Finally, the control on each vehicle i = 1, 2 will thus be written

ωωω i =ωωω
⊥
dr,i +ωωω r,i = (ω⊥dr +ur,i)û̂ûui +wr,iŵ̂ŵwi. (17)

Notice that the directions û̂ûui, ŵ̂ŵwi are not well-defined when ω⊥dr = 0: nonetheless,
in this case an arbitrary definition of these axes (still in the plane orthogonal to vi)
will be suitable.
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Figure 3: Decomposition of relative controls ωωω r,i along directions û̂ûui and ŵ̂ŵwi

orthogonal to the velocities vi.

The last step is now to rewrite the necessary constraint (13) in terms of control
components along û̂ûui and ŵ̂ŵwi. Substituting (16) in (13) and using properties of
scalar and cross product we obtain (see Appendix 10.2.1–10.2.3)

−
ur,1

ω⊥dr
(vT

2 v1−1)+wr,1DT û̂ûu1 =

−
ur,2

ω⊥dr
(1−vT

2 v1)+wr,2DT û̂ûu2.
(18)

As shown in Appendix 10.2, DT û̂ûu1 = DT û̂ûu2. Let

k1 ,
1−vT

1 v2

ω⊥dr
=

2 sin2 (θ

2

)
sin2

σ

ω⊥dr

k2 , DT û̂ûui =−
cosσ sinθ sin2

σ

ω⊥dr

and also

α ,
k1

k2
=−

tan θ

2
cosσ

.

Finally, necessary constraint can be rewritten as

α(ur,1 +ur,2)+(wr,1−wr,2) = 0

that is linear in the control values ur,i and wr,i.

10



4. Necessary condition for controllability

The goal of this section is to determine conditions on internal system config-
urations that will be proven to be necessary for system controllability. We hence
need first to determine those internal configurations for which controls that verify
(3) exist. A possibility is to determine the minimum norm controls that verify the
distance constraint. With this approach the desired control inputs are the solu-
tion of a convex optimization problem. Indeed, as the bound (3) applies to both
vehicles, we can aim at minimizing the maximum between the norms of each con-
trol while keeping a constant distance. Hence, the goal is to solve the following
MinMax problem:

Problem 2. Given x = (ur,1, wr,1, ur,2, wr,2) and ωωω i = (ω⊥dr + ur,i)û̂ûui +wr,iŵ̂ŵwi, de-
termine

(ω∗)2 = min
x

f0(x) = min
x

(
max

(
‖ωωω1‖2, ‖ωωω2‖2)) (19)

subject to
h1(x) = α(ur,1 +ur,2)+(wr,1−wr,2) = 0. (20)

Theorem 1. The controls that solve the convex optimization problem 2 are char-
acterized by

u∗r,i =−
1

1+α2 ω⊥dr

w∗r,i = (−1)iαu∗r,1 = (−1)i+1 α

1+α2 ω⊥dr

(21)

and has norm

ω
∗ = ‖ωωω∗i ‖=

√
α2

1+α2 ω
⊥
dr = 2

sin2 (θ

2

)
sinσ

D
. (22)

Proof. The optimization problem is convex since it consists of the minimization
of a convex function f0(x) (i.e., a pointwise maximization of squared norms that
are convex functions) and of a linear equality (hence convex) constraint h1(x).
The cost function is not differentiable and a first order necessary condition of
optimality in x is given by

0 ∈ ∂ f0(x)+µ∂h1(x), (23)

where ∂ f (x) is the subdifferential of f in x and µ a multiplier (we refer to [31]
and [32] for a detailed description of the theory of convex optimization problems).
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Since h1(x) is differentiable in x, its subdifferential is the gradient in x, i.e.
∂h1(x) = {∇h1(x)} with ∇h1(x) = (α, 1, α,−1)T . On the other hand the cost
function f0(x) = max

(
‖ωωω1‖2, ‖ωωω2‖2) is not differentiable in ‖ωωω1‖ = ‖ωωω2‖ and

the subdifferential in this case is given by the convex hull of the gradients of the
two squared norms, i.e. for any subgradient g∈ ∂ f0(x) there exist non negative λ1
and λ2, with λ1+λ2 = 1, such that g = λ1(ω

⊥
dr +ur,1, wr,1, 0, 0)T +λ2(0, 0, ω⊥dr +

ur,2, wr,2)
T . Otherwise, the subdifferential is the gradient of ‖ωωω1‖2 (‖ωωω2‖2) if

f0 = ‖ωωω1‖2 > ‖ωωω2‖2 ( f0 = ‖ωωω2‖2 > ‖ωωω1‖2).
The necessary condition of optimality (23) requires the existence of a not null

vector (λ1, λ2, µ) such that:
ω⊥dr +ur,1 0 α

wr,1 0 1
0 ω⊥dr +ur,2 α

0 wr,2 −1


 λ1

λ2
µ

=


0
0
0
0


Hence, imposing null determinants of submatrices, necessary conditions for opti-
mality are: {

ω⊥dr +ur,1−αwr,1 = 0
ω⊥dr +ur,2 +αwr,2 = 0

(24)

By direct inspection of previous linear system both λ1 and λ2 must be non zero.
Hence, the optimum is reached when ‖ωωω1‖= ‖ωωω2‖ (i.e. in the point of not differ-
entiability of the cost function). Using (17) and (24), we have that the optimum is
hence obtained when wr,1 =±wr,2.

In case of wr,1 = wr,2, the conditions (24) and the constraint (20) are verified
only if ω⊥dr = 0 and ur,1 = −ur,2 = αwr,1. The value of the cost function is u2

r,1 +

w2
r,1 = (1+α2)w2

r,1. Hence, when ω⊥dr = 0, the best choice is wr,1 = wr,2 = ur,1 =
ur,2 = 0 that corresponds to a zero control.

In case of wr,1 = −wr,2, the conditions (24) and the constraint (20) implies
ur,1 = ur,2 = − 1

1+α2 ω⊥dr and wr,1 = α

1+α2 ω⊥dr . The value of the cost function is
α2

1+α2 (ω
⊥
dr)

2. Hence the thesis.

Remark 4. In the particular case of θ = π , the optimal solution of the Problem
2 coincides with the dragging control, i.e. ωωω∗1 = ωωω∗2 = ωωωdr. Indeed, for θ = π

the constraint (20) reduces h1(x) = ur,1 +ur,2 = 0 while conditions (24) reduce to
wr,1 = wr,2 = 0. Hence, the minimum is attained for ur,1 = −ur,2 = 0. Since, for
θ = π , û1 = û2 we have ωωω∗1 =ωωω∗2 =ωωωdr.
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It is possible now to prove that the controls that solves Problem 2 do also
guarantee that internal variables remain constant. Indeed, it holds

Proposition 3. For any pair of control vectors ωωω i, optimal solutions of Problem 2,
i.e. such that the relative controls verify

wr,i = (−1)i
αur,i, for i = 1, 2, (25a)

ur,1 = ur,2, (25b)

σ and θ are constant during system evolution.

The proof can be found in Appendix 10.3 and, in particular, it proves also that
the only condition (25a) of Proposition 3 is sufficient to ensure that the angle σ is
constant.

We are now able to prove

Theorem 2. The necessary condition for the existence of an admissible control,
that steers the system among any two configuration, while respecting the distance
constraint (7), is that

2
sin2 (θ

2

)
sinσ

D
< ωM, (26)

at any time instant.

Proof. Consider an admissible control ωωω , i.e. with ‖ωωω‖≤ωM, that, by hypothesis,
maintains a constant distance vector D between any given configuration pairs.
Such control is a feasible variable of the optimization Problem 2 (it verifies the
problem constraints) and hence it holds ‖ωωω‖ ≥ω∗. Moreover, it necessarily holds

that ω∗ ≤ ωM, i.e. 2
sin2( θ

2 )sinσ

D ≤ ωM. We now want to prove the validity of
the strict inequality. Consider initial and final configurations that strictly verify
the condition (26). In case of equality, the control ωωω , with magnitude ω∗ = ωM,
is a solution of the optimization problem and hence it verifies the hypothesis of
Proposition 3. As a consequence, such control keeps constant the system internal
variables and hence has constant maximum magnitude. Note that its magnitude
can not be decreased since it has the minimum possible value. Hence, with such
control, it is not possible to steer the system toward any final configuration for
which a strict inequality holds.
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(a) Steering θ to zero (keeping constant σ ) us-
ing ωωωr,1 and ωωωr,2 aligned along D and with op-
posite direction.

(b) Steering σ to zero (keeping constant θ = 0)

Figure 4: Steering θ and σ to zero.

It is worth noting that, if ωM > 2
D the condition (26) is always verified. More-

over, in terms of minimum turning radius R and desired distance value D, this
occurs if D > 2R that is the same condition to ensure complete controllability for
a pair of planar Dubins vehicles, see [13]. In the rest of the paper we assume the
more restrictive and interesting condition of ωM ≤ 2

D .
In the following, we will prove that the condition in (26) is also sufficient for

the existence of controls that verify (3) while maintaining the desired distance,
i.e. one of the main results of this paper. For this purpose we first introduce the
concept of feasible configurations and then provide a motion planning algorithm
to steer the system between feasible configurations while ensuring the control and
distance constraints.

Definition 1. A configuration ξξξ = (q1, q2, v1, v2) will be called feasible if σ1 =

σ2 = σ and 2
sin2( θ

2 )sinσ

D < ωM, i.e. equations (6) and (26) hold.

Only feasible initial configurations are considered so that distance constraint
is initially verified.

5. Basic Movements

In order to get a complete motion planning algorithm for a 3D–Dubins pair,
it is convenient to start investigating some basic movements and eventually con-
nect them to form the complete path. Basic movements are defined based on the
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necessity to verify the control’s admissibility condition, given by (3), along each
movement. Given initial and final configurations, it is necessary to rotate and
translate D accordingly. Based on results of previous sections we will now prove
that there exist control inputs with limited amplitude that are able to regulate the
rotation and translation of D independently among particular configurations char-
acterized by σ = θ = 0. This lead to the choice of (basic) maneuvers to steer the
system from generic configurations to such type of configurations (and viceversa)
or among such particular configurations. Moreover, as it will be shown next, from
such configurations translations and rotations of D will be obtained with planar
movements. Hence, the three basic movements, described next, have been chosen
in order to: a) steer σ and θ to zero, b) purely rotate D and c) purely translate D
(on a plane containing D). The reverse of the first movement will be used to bring
back σ and θ to desired values.

From any feasible configuration, in order to have a margin of choice in the
control, it is convenient to choose controls of the form ωωω i = ωωω∗i +∆ω∆ω∆ω i, where
ωωω∗i are the controls associated to the solution of Problem 2 that depend on the
internal configuration values. Recall that, from Proposition 3, ωωω∗i keep the internal
configurations θ and σ constant. Hence, in the rest of the paper the value of ∆ω∆ω∆ω i
will be determined to steer the system while guaranteeing ‖ωωω i‖ ≤ ωM.

5.1. Steering of θ and σ to zero
Steering θ to zero. Referring to Fig. 4(a), consider ∆ω∆ω∆ω1 and ∆ω∆ω∆ω2 aligned along
D so that the effect of relative controls on D is a rotation around its own axis and
the distance constraint is not violated along system evolution.

Given an initial formation configuration ξξξ s, the function Sθ (ξξξ s) provides the
configuration ξξξ 1 reached by the formation subject to controls ωωω i with ∆ω∆ω∆ω1=−∆ω∆ω∆ω2,
parallel to D so that θ decreases and applied until θ is zero.

Steering σ to zero. Once θ = 0 also ωωω∗i = 0 and hence ωωω i =∆ω∆ω∆ω i i = 1, 2. Refer-
ring to Fig. 4(b), in order to align the two 3D–Dubins on the distance vector, thus
to rotate the vectors vi towards D or equivalently to steer σ to zero, it is sufficient
to choose controls ωωω i orthogonal to vi and D, i = 1, 2.

Hence given an initial formation configuration ξξξ 1, with θ = 0, the function
Sσ (ξξξ 1) provides the configuration aξξξ s reached by the formation while applying
controls ωωω i with ωωω1=ωωω2, orthogonal to both D and v1 = v2, until σ is zero. Note
that the equal magnitude is chosen to verify that σ1 =σ2 =σ during evolution (see
control constraint (13)). Moreover, in the configuration aξξξ s it holds θ = σ = 0.
Hereafter, the superscript a is used to denote that vehicles are aligned with D.
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We refer to S(ξξξ s) as the function that consisting in the composition of Sθ (ξξξ s)
and Sσ (ξξξ 1) provides a configuration aξξξ s with θ = σ = 0.

5.2. Steering of θ and σ from zero
With the function introduced in previous section, we are able to steer the sys-

tem from any configuration to a configuration with σ = θ = 0. In order to perform
the inverse maneuver the concept of reverse system is required. The reverse sys-
tem of (2), is: {

q̇R
i =−vR

i
v̇R

i =−vR
i ×ωωωR

i
, i = 1, 2. (27)

All symbols and subscripts are consistent to what we defined in (2). The only
difference stands in the changed signs in the dynamics evolution.
In addition, the constraints represented by (3) and (7) also apply to this model
with the appropriate variable substitution (e.g., qR

1 in place of q1).

Remark 5. Applying the control ωωω(t) to system (2), from ξξξ (t0) = (q1(t0), q2(t0),
v1(t0), v2(t0)) a configuration ξξξ (t f ) = (q1(t f ), q2(t f ), v1(t f ), v2(t f )) is reached
in t = t f . In the reverse system, starting from ξξξ R(t0) = ξξξ (t f ) and applying control
ωωωR(t) = ωωω(t f − t) (i.e. the reverse control law) the configuration ξξξ R(t f ) = ξξξ (t0)
is obtained.

As a consequence, given a configuration ξξξ f , by applying the functions Sθ and
Sσ in the reverse systems (i.e. using the reverse controls) a configuration aξξξ f
with σ = θ = 0 is obtained. We refer to SR(ξξξ f ) as the function that given ξξξ f
returns aξξξ f such that by applying function S(ξξξ ) to ξξξ =a ξξξ f the configuration ξξξ f
is reached.

5.3. Rotation of D on a plane
Consider now a configuration aξξξ s with θ = σ = 0 and a vector D̂ of length D.

In order to align vector D, in the initial configuration aξξξ s, to D̂ we can perform a

rotation around vector D× D̂ of angle δ = arcsin
(
‖D×D̂‖

D2

)
.

When θ = 0, by rotating vectors vi in opposite directions a rotation of D is
induced and internal states are modified. The rotation occurs on the desired plane
if controls ∆ω∆ω∆ω i are parallel to D× D̂ but with opposite directions. The module of
the control input must be equal to guarantee that the distance constraint is verified
along the motion. Note that, applying such maneuver, θ = π as soon as σ 6= 0.

It is worth noting that by applying such non null inputs, ∆ω∆ω∆ω i, the angle σ

increases leading to a possible violation of the necessary condition (26). This may
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be avoided by choosing, if necessary, ∆ω∆ω∆ω i = 0. Indeed, once σ 6= 0 the vector D
rotates even though ∆ω∆ω∆ω i = 0 due to the presence of ω∗i (from Remark 4 ω∗i = ωdr)
whose amplitude depends on the internal configurations values. Hence, in order
to obtain a total rotation of amount δ a sequence of three controls can be used as
described next.

Given a configuration aξξξ s with θ = σ = 0 and a vector D̂ of length D consider
the function R(aξξξ s, D̂) that provides the configuration aξ with θ = σ = 0 and D
parallel to D̂. Consider a vector ω̄ωω and the time instants t̄ and t1. The function is
based on the composition of three controls:

1. ∆ω∆ω∆ω1 =−∆ω∆ω∆ω2 = ω̄ωω for t ∈ [0, t1),
2. ∆ω∆ω∆ω1 =∆ω∆ω∆ω2 = 0 (i.e. ωωω i =ωωω∗i ) for t ∈ [t1, t̄− t1),
3. ∆ω∆ω∆ω1 =−∆ω∆ω∆ω2 =−ω̄ωω for t ∈ [t̄− t1, t̄].

With those choices of interval times and controls we have a symmetric be-
haviour of the system while controls 1 and 3 are applied. Hence, the amount of
rotations performed by D is the same and if the necessary condition (26) is verified
while applying control 1 it is also verified once control 3 is used.

It is now necessary to determine, based on the desired rotation amount δ , the
value of the three parameters in order to steer the formation while not violating the
control input constraint (3). As abovementioned, the direction of vector ω̄ωω must
be parallel to D× D̂.

Consider a modulus ω̄ ≤ ωM. While the constant magnitude control ω̄ωω is
applied it holds ωdr =

2
D sin(ω̄ t), ref. to (11). Hence, the time needed to obtain a

rotation of D of amplitude δ

2 is tδ such that 2
Dω̄

(1− cos(ω̄ tδ )) = δ/2. Note that
the rest of the rotation will be performed while applying control 3 for the same
amount of time.

On the other hand, the control input constraint must not be violated and it
must hold ωdr + ω̄ ≤ ωM. Indeed, from Remark 4, it holds that ω∗ = ωdr. While
applying control 1, the time to reach the dragging control limit value ωdr = ωM−
ω̄ is tM such that 2

D sin(ω̄ tM) = ωM− ω̄ . Hence, the first control must be applied
for time t1 = min{tδ , tM}.

If ω̄ 6= 0 is such that t1 = tδ < tM, the rotation of δ

2 is obtained before that the
control saturation occurs and hence before the necessary condition ωdr ≤ ωM is
violated. In this case, it is sufficient to choose the parameter t̄ = 2t1 that corre-
sponds to not apply control 2 while control 3 induces desired total rotation δ at
time 2t1. Moreover, it is worth noting that the symmetric control sequence steers
the system toward a configuration that verifies θ = σ = 0.
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Otherwise, if ω̄ is such that t1 = tM < tδ , a partial rotation of δ̄ = 2
Dω̄

(1−
cos(ω̄ tM)) is obtained (again the same amount of rotation is performed while
applying control 3). At time tM, the controls ∆ω∆ω∆ω i = 0 can be applied. In other
words the controls are ωωω i =ωωω∗i =ωωωdr of magnitude ωM− ω̄ and they keep θ = π

and σ = ω̄ tM constant (i.e. D rotates with constant angular velocity ωM − ω̄).
Hence, time t̄ is such that the remaining desired rotation is performed, i.e. it
holds δ −2δ̄ = (ωM− ω̄)(t̄−2tM). In this case the control sequence is effectively
composed by three control values. Also in this case the sequence steers the system
toward a configuration that verifies θ = σ = 0.

5.4. Translation of D on a plane
Given two formation configurations aξ and aξξξ f both with σ = θ = 0 and

parallel distance vectors D the function T (aξ , aξξξ f ) steers the formation between
the two configurations with a planar translation.

Starting from a configuration with σ = θ = 0 consider the controls of equal
amplitude and orthogonal to the plane containing the two configurations aξ and
aξξξ f . It is worth noting that, with this choice of controls, during the evolution
θ ≡ 0 and σ1 = σ2 = σ and hence the formation is maintained.

In particular, it is possible to steer the system with circular arcs and straight
lines choosing ∆ω∆ω∆ω1 = ∆ω∆ω∆ω2 (i.e., ωωω i = ∆ω∆ω∆ω i) with magnitude smaller than ωM. It
is worth noting that the necessary condition (26) is always verified since θ = 0.
Hence, a parallel Dubins path can be computed between the two configurations
consisting of parallel arcs of circles and straight lines, see e.g. [24], without rota-
tions of D, i.e. ωdr = 0.

6. Necessary and Sufficient Condition for Controllability

We are now interested in proving that the condition (26) in initial and final
configurations is also sufficient to guarantee the existence of a control law that
steers the system between the configurations without violating the distance and
input constraints. In other words we are now able to prove the following

Theorem 3. Given internal configuration variables θ and σ1 = σ2 = σ and the
distance D to be maintained, the condition

2
sin2 (θ

2

)
sinσ

D
< ωM, (28)

at initial and final configurations, is both a necessary and sufficient condition for
the controllability of the system. Where ωM is the maximum control effort allowed.
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Figure 5: Motion planning steps. From the initial configuration ξξξ s, by applying the control ΩΩΩ1
a configuration aξξξ s such that θ = σ = 0 is reached and hence the vehicles are aligned with the
vector DDD. Starting from this configuration, by using the control ΩΩΩ2 the vector DDD rotates until the
pair of vehicles reach a configuration aξξξ . In this new configuration the vector aξξξ and aξξξ f differ by
a simple translation. As a consequence, by applying control ΩΩΩ3 a parallel Dubins path is realized
and the configuration aξξξ f is reached. Finally, by using the control ΩΩΩ4 =ΩΩΩR

1 , the final configuration
ξξξ f is reached.

Proof. Theorem 2 states that the condition is necessary to ensure controllability
of the system. Consider feasible initial and final configurations ξξξ s and ξξξ f , i.e.
configurations in which the condition (28) holds. We now need to prove that
it exists a control sequence with limited modulus and that verifies the distance
constraint during evolution between ξξξ s and ξξξ f .

Denote with ΩΩΩ = (ωωω1,ωωω2) and as ΩΩΩR = (ωωωR
1 ,ωωωR

2 ) the controls of the original
and reverse systems, respectively. Referring to Fig. 5, a motion planning algo-
rithm can be obtained as follows:

1. Steer the system applying the control ΩΩΩ1, as described in section 5.1, until
the configuration aξξξ s = S(ξξξ s) in which σ = θ = 0 is reached. In other words
in aξξξ s vehicles are aligned to the distance vector.

2. Apply function SR(ξξξ ) to ξξξ = ξξξ f to obtain the configuration aξξξ f = SR(ξξξ f ).
Let D̂ be the distance vector of the formation in configuration aξξξ f and let
aξξξ = R(aξξξ s, D̂). Apply the control sequence ΩΩΩ2, described in section 5.3,
to reach the configuration aξξξ by rotating D until it is aligned with D̂;

3. Steer the system from aξξξ to aξξξ f (with aligned vectors distance) through
a parallel Dubins path applying control ΩΩΩ3 computed through T (aξξξ , aξξξ f )
(ref. section 5.4);

4. Steer the system from aξξξ f to ξξξ f applying controls ΩΩΩ4 obtained as the re-
verse of the controls ΩΩΩR

1 used to steer the reverse system from ξξξ f to aξξξ f
with controls of type ΩΩΩ1.
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Figure 6: Path obtained from ξξξ s = (0, 0, 0, 3, 0, 0, 1√
3
, 1√

3
, 1√

3
, 1√

3
, 1√

3
,− 1√

3
)T to ξξξ f =

(0, 2, 0, 0, 5, 0,− 1√
3
,− 1√

3
, 1√

3
, 1√

3
,− 1√

3
, 1√

3
)T .

In summary, the steps are:

ξξξ s
ΩΩΩ1−→ a

ξξξ s
ΩΩΩ2−→ a

ξξξ
ΩΩΩ3−→ a

ξξξ f
ΩΩΩ4−→ ξξξ f

Note that, as mentioned in sections 5.1- 5.4 the controls in any step of the pro-
posed algorithm maintain a constant distance between vehicles without violating
the input constraint. Hence, the thesis.

7. Simulations

Consider initial and final configurations ξξξ T
s =(q1(t0)T , q2(t0)T , v1(t0)T , v2(t0)T )

and ξξξ T
f = (q1(t f )

T , q2(t f )
T , v1(t f )

T , v2(t f )
T ) where q1(t0) = (0, 0, 0)T , q2(t0) =

(3, 0, 0)T , v1(t0)= ( 1√
3
, 1√

3
, 1√

3
)T , v2(t0)= ( 1√

3
, 1√

3
,− 1√

3
)T , q1(t f )= (0, 2, 0)T ,

q2(t f ) = (0, 5, 0)T , v1(t f ) = (− 1√
3
,− 1√

3
, 1√

3
)T and v2(t f ) = ( 1√

3
,− 1√

3
, 1√

3
)T .

The motion planning algorithm described in the proof of Theorem 3 will drive the
system along the path represented in Fig. 6 maintaining a distance D = 31.

1At https://youtu.be/El10SsKXy7o a video of the system evolution can be found.
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(a) Control Ω1Ω1Ω1 (b) Control Ω2Ω2Ω2

(c) Control Ω3Ω3Ω3 (d) Control Ω4Ω4Ω4

Figure 7: Steps of path represented in Fig. 6. Each picture represents the path that the vehicle
follows by apply the control ΩiΩiΩi as represented in Fig. 5. Notice that, in the subfigures b) and c),
the vehicles move on a plane.

To better highlight the planar evolution of the vehicles along parts of the path
(in steps 2 and 3 of the algorithm), in Fig. 7 the step-by-step evolution for the
path of Fig. 6 is represented. Moreover, in Fig. 8(a) the error with respect to the
distance D is reported to show the distance verification of the proposed control law
which is in the order of 10−8 due to numerical errors. In Fig. 8(b) the evolution of
σ and θ is reported. Note that, according to basic movements described in 5, in
the first and last steps σ is constant while θ decreases from initial value to zero in
step 1 and viceversa increases from zero to the final value in step 4. During step
2 the vector D is rotated while θ = π . Finally in step 3 the vector D is translated
while θ is zero.

In figures 9(a) and 9(b) the magnitudes of controls ωωω1, ωωω2 and ωωω∗ for the evo-
lution of the system are reported. Notice that the magnitudes remain below the

maximum allowed value ωM chosen as 2
sin2

(
θ(0)

2

)
sinσ(0)

D = 0.314[rad/s]. Further-
more, ω1 = ω2 during steps 1, 3 and 4 while when a rotation of D must be induced
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(a) Error on the required distance. (b) Evolution of the internal variables σ and θ .

Figure 8: Evolutions of distance error and internal configurations values for path of Fig. 6. Notice
that, in the plotting (a), the distance constraint is guaranteed along the whole path.

(a) Controls ω1 and ω2 and maximum allowed
value ωM .

(b) Controls ω1, ω2 and ω∗.

Figure 9: Evolutions of controls for path of Fig. 6. From the plotting (a) it is possible to verify that
the maximum allowable effort control ωM is always satisfied.

or stopped, they differ.

8. Conclusions

In this paper a model of a system consisting of a pair of Dubins vehicles
moving in a 3D space maintaining constant distance has been considered with
constraints on the controls. A motion planning algorithm of the proposed sys-
tem has been introduced based on three basic movements with associated control
laws. A theorem providing necessary and sufficient conditions on the initial and
final configurations that guarantees the existence of admissible controls has been
demonstrated based on the proposed motion planning algorithm.
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The results of this paper can be seen as a starting point to solve the motion
planning and controllability problems for more complex formations of multi-
vehicle systems as it has been done in [13, 24] for the planar case. Furthermore,
the existence of a control that steers the system among feasible configurations is
fundamental to solve the challenging optimal control problem, i.e. to determine
the control law that steers the system as desired while minimizing a certain cost
functional (e.g. time spent, distance travelled).

Future developments will also regard control laws that take into account more
complex constraints depending on both states and controls, such as non uniform
bounds on the control components and bounds on the roll angle.
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10. Appendix

10.1. Proof of Proposition 1
Proposition 2. Applying controls ωωω1 =ωωω2 =ωωωdr (i.e. considering ωωωr,1 =ωωωr,2 =
0), σ1 = σ2 = σ and θ are constant during system evolution. Indeed, the same
rotational velocity is applied to v1, v2, and to D, making the system rotating as a
whole, and keeping the internal configuration constant.

Proof. From the definition of σi in (5) we have cosσi =
1
DDT vi. σ1 = σ2 = σ

and condition (13) holds for hypotheses. From Proposition 2, we have that D is
constant and hence it holds

−sinσi σ̇i =
1
D

ḊT vi +
1
D

DT v̇i.

We recall that sinσi = ‖vi⊥‖ and Ḋ = D×ωωωdr. Furthermore, for hypothesis,
v̇i = vi×ωωωdr, hence

σ̇i =−
1

D‖vi⊥‖
(
(D×ωωωdr)

T vi +DT (vi×ωωωdr)
)
= 0, (29)

where the last equality follows from

aT (b× c) =−bT (a× c). (30)
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From the definition of θ in (5) we have cosθ = v1⊥
‖v1⊥‖

T v2⊥
‖v2⊥‖

. Notice that, under
the hypothesis on the control variables, σi are constant and hence ‖vi⊥‖ = sinσi
are constant for i = 1, 2. Hence

−sinθ θ̇ =
v̇1⊥
‖v1⊥‖

T v2⊥
‖v2⊥‖

+
v1⊥
‖v1⊥‖

T v̇2⊥
‖v2⊥‖

.

To prove that θ is constant during evolution we need to prove that

v̇T
1⊥v2⊥+vT

1⊥v̇2⊥ = 0. (31)

From (4) we have

v̇i⊥ = v̇i−
1

D2 ((v̇
T
i D)D+(vT

i Ḋ)D+(vT
i D)Ḋ).

Substituting Ḋ = D×ωωω i and v̇i = vi×ωωω i and using (30) we obtain that

v̇i⊥ = vi×ωωω i−
1

D2 (v
T
i D)(D×ωωω i).

Notice that the last addendum in previous equation is orthogonal to D and
hence computing v̇T

i⊥v j⊥ the term related to 1
D4 is zero. Hence

v̇T
i⊥v j⊥ = (vi×ωωω i)

T v j− 1
D2 (vT

j D)(vi×ωωω i)
T D

− 1
D2 (vT

i D)(D×ωωω i)
T v j = (v j×vi)

Tωωω i+
1

D2 (D×ωωω i)
T ((vT

j D)vi− (vT
i D)v j).

(32)

Notice that swapping i with j the equation changes in sign. Hence, under the
hypothesis ωωω1 =ωωω2 we have v̇T

1⊥v2⊥+vT
1⊥v̇2⊥ = 0.

10.2. Useful results based on vector products identities
In this section we report, for reader convenience, some computations based on

scalar and cross products that are used in the paper.

10.2.1. Computation of û̂ûui

From (15) we have û̂ûui =
ωωωdr⊥,i

ω⊥dr
. Substituting (10) in (15), û̂ûui can be obtained as

function of v1 and v2 as follows and, thus, we obtain

û̂ûui =
1

ω⊥dr

[
(v2−v1)×D

D2 −

(
(v2−v1)×D

D2

T

vi

)
vi

]
. (33)

27



10.2.2. vi× (û̂ûui×vi) = û̂ûui

From the triple vector product it holds

vi× (û̂ûui×vi) = (vT
i vi)û̂ûui− (vT

i û̂ûui)vi = û̂ûui. (34)

The last equation follows from the orthogonality of vi and û̂ûui and the fact that vi is
a unit vector.

10.2.3. Computation of DT (û̂ûui×vi)

From the definition of û̂ûui and (33) we have

ω⊥drû̂ûui×vi =[
(v2−v1)×D

D2 −
(

(v2−v1)×D
D2

T
vi

)
vi

]
×vi =

1
D2 [(v2−v1)×D]×vi =
1

D2

[
(vT

2 vi−vT
1 vi)D− (DT vi)(v2−v1)

] (35)

where we have used the triple vector product in the last equation. Considering (7)
we obtain

DT (û̂ûui×vi) =
1

ω⊥dr

[
(vT

2 vi−vT
1 vi)

]
(36)

10.2.4. Computation of vT
1 v2

In order to compute a dot product, it is possible to choose an arbitrary refer-
ence frame. For simplicity, let us consider the reference frame where the x-axis is
directed along D, the z-axis is directed along ωωωdr, and the y-axis is chosen accord-
ingly to the right-hand rule, i.e. x× y = z.

In this frame, velocities form an angle σ with the x-axis and have equal z
components. Components along the y-axis have same modulus and opposite sign.
Finally, the angle between their projection on the y-z plane and the z-axis is θ

2 .
This translates into the following

v1 = [cosσ sinσ sin θ

2 sinσ cos θ

2 ]

v2 = [cosσ −sinσ sin θ

2 sinσ cos θ

2 ]
(37)

The dot product is, thus

vT
1 v2 = (cosσ)2 +(sinσ)2 cosθ . (38)

In the paper we will use also the identity

(1−vT
1 v2) = 2

(
sin

θ

2

)2

(sinσ)2 (39)
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10.2.5. Proof that DT û̂ûu1 = DT û̂ûu2

From the conditions DTωωωdr = 0 we obtain

DT û̂ûui =
1

ω⊥dr
DTωωω⊥dr,i =

1
ω⊥dr

DT (ωωωdr− (ωωωT
drvi)vi) =

− 1
ω⊥dr

(ωωωT
drvi)(DT vi)

(40)

Since DT (v2− v1) = ωωωT
dr(v2− v1) = 0, last term of (40) is independent on the

value of i = 1 or 2. Hence the thesis.
Notice that, using the same reference frame defined in 10.2.4 and the value of

ωdr in (11) we have

DT û̂ûui =−
1

ω⊥dr
sin2

σ cosσ sinθ (41)

10.3. Proof of Proposition 3
Proposition 3. Given relative controls ωωωr,i verifying (20) and such that

wr,i = (−1)i
αur,i, for i = 1, 2, (42a)

ur,1 = ur,2, (42b)

σ1, σ2 and θ are constant during system evolution.

Proof. Referring to the proof of Proposition 1 (in particular equation (29)) and
considering v̇i = vi×ωωω i, the condition

(D×ωωωdr)
T vi +DT (vi×ωωω i) = 0, (43)

implies σ̇i = 0. Writing (43) in terms of relative controls ωωω r,i and using (30), we
have to prove that

DT (vi×ωωω r,i) = 0. (44)

Notice that, from the definition of û̂ûui and ŵ̂ŵwi and the (42a), DT (vi×ωωω r,i) =DT (vi×
(ur,iû̂ûui +wr,iŵ̂ŵwi)) = ur,i

(
DT (vi× û̂ûui)− (−1)iαDT û̂ûui

)
. From (36), (39) and (41) we

obtain DT (vi× û̂ûui)− (−1)iαDT û̂ûui = 0. Concluding, the angles σi are constant
under the only hypothesis (42a).

Regarding the angle θ the proof of Proposition 1 can be directly applied to
the control under the hypotheses (3). Hence, since equation (31) is linear in ωωω i,
the common part ωωωdr can be disregarded and it is sufficient to prove (31) in case
ωωω i = ωωω r,i. Equivalently, equation (32) holds with ωωω i = ωωω r,i. Using the condition
(44), equation (32) becomes

v̇T
i⊥v j⊥ = (vi×ωωω r,i)

T v j− 1
D2 (vT

i D)(D×ωωω r,i)
T v j. (45)
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Given (7), DT v1 = DT v2, it is sufficient to prove that (v1×ωωω r,1)
T v2 = −(v2×

ωωω r,2)
T v1 and (D×ωωω r,1)

T v2 =−(D×ωωω r,2)
T v1.

Consider first (vi×ωωω r,i)
T v j. Notice that from the definition of û̂ûui we have

(v1× û̂ûu1)
T v2 =−(v2× û̂ûu2)

T v1 =
1

ω⊥dr
(v2×v1)

Tωωωdr. Moreover, from the condition

ωωωT
dr(v2−v2) = 0 it holds vT

2 ωωωdr = vT
1 ωωωdr and the definition of û̂ûui we have vT

1 û̂ûu2 =

vT
2 û̂ûu1 =

vT
1 ωωωdr

ω⊥dr

(
1−vT

1 v2
)
. Hence, substituting ωωω r,i = ω∗i û̂ûui +(−1)iαω∗i (vi× û̂ûui)

in (vi ×ωωω r,i)
T v j, under hypothesis (42b), we obtain (v1 ×ωωω r,1)

T v2 = −(v2 ×
ωωω r,2)

T v1.
Consider now (D×ωωω r,i)

T v j. From (44) and (10) we have (D×ωωω r,i)
T v j =

(D×ωωω r,i)
T (v j−vi) =−(D× (v j−vi))

Tωωω r,i = (−1)i+1D2ωωωT
r,iωωωdr. Finally, from

(15), ωωωT
r,iωωωdr = ω∗i ωtr⊥ hence the thesis.

30


