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Abstract

This paper considers the problem of optimally deploying mlnectional sensors, with poten-
tially limited sensing radius, in a network-like environmieThis model provides a compact and
effective description of complex environments as well ag@er representation of road or river
networks. We present a two-step procedure based on a éidinet gradient ascent algorithm to
find a local optimum for this problem. The first step performsoarse optimization where sensors
are allowed to move in the plane, to vary their sensing raaigsto make use of a reduced model of
the environment called collapsed network. It is made up dfiefdiscrete set of points, barycenters,
produced by collapsing network edges. Sensors can be aisterdd to reduce the complexity of
this phase. The sensors’ positions found in the first stepttere projected on the network and
used in the second finer optimization, where sensors ardraoresl to move only on the network.
The second step can be performed on-line, in a distributsltida, by sensors moving in the real
environment, and can make use of the full network as well deetollapsed one. The adoption of
a less constrained initial optimization has the merit ofueidg the negative impact of the presence
of a large number of local optima.

The effectiveness of the presented procedure is illustiayea simulated deployment problem

in an airport environment.

. INTRODUCTION

Imagine a scenario where a toxic gas is spreading in an araduoilding and safe paths
have to be found to evacuate people. Or think of an airpoit@mment where people moving
through rooms and corridors has to be surveilled in orderdteat and avoid terroristic

actions. Or consider the need of measuring environmentattdies, such as temperature or
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humidity, on wide areas to the aim of improving theoreticald®ls or making more accurate
weather forecast.

There is a great number of situations that would greatly yenfe use of network of
sensors. Indeed, many of the previous tasks are difficulimpossible, to be accomplished
by a single sensor. The employment of a large number of semsoreases the robustness
to sensor failure and communication disruption and makéaslyadistributed observations
possible. If sensors are able to move, the number of tasksctre perform is still greater.

Static and dynamic sensors’ networks need to be deployebeiretivironment, and the

way this problem is solved can significantly affect the qyadif service they have to provide.

A. Static Deployment and Locational Optimization

Sensors’ deployment problems are strictly related toitesllocation-allocation problems,
which are the subject of the locational optimization diom ([1]).

In locational optimization objective functions are usedléscribe the interactions between
users and facilities and among them. Users may find faailtiesirable, hence they would
like to exert an attractive force to facilities, or undebleaand they would repel them. The
attractive model can describe allocation problems of useduvices or facilities such as
mailboxes, hospitals, fire stations, malls, etc. (see [Lhe repulsive one, instead, can be
used to model problems where polluting or dangerous feslifi.e. nuclear reactors, garbage
dumps, etc.) are to be located far enough from urban congédioas. An excellent survey
on undesirable facility locations problems is given by [8¢€ also [3]). These operational
research problems can be converted in sensors’ deploymalniems by considering sensors
as facilities and points or areas, where events can happeworoe quantities has to be
measured, as users.

Two well known problems, involving one facility only, areetltlassical Weber and the
obnoxious facility location problems (see [4], [5] for a e&t heuristic solution). Three
problems involvingp facilities are thep-center,p-median andp-dispersion problems. Some
recent results on thg-center problem are in [6] and [7]. The latter paper addessso the
p-dispersion problem.

A classicalp-median problem, close to the one considered in this pajper,be simply
described as the one of finding the optimal locationp dcilities by minimizing the average
distance of the demand points to the nearest facility (sp®f{& recent survey on heuristics

methods to solve it). Close to themedian problem is the multisource Weber problem, for
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which many heuristics exist ([9]). A more general formwatof these problems can be found
in [10] and [11]. In [10] a dynamical (gradient descent) vamsof the Lloyd’s algorithm
[12] has been presented to find a local optimum for a genedalizmedian problem. A
deterministic annealing optimization algorithm to solye tclassical version is reported in
[13]. The aforementioned solutions to thpemedian problem, as well as many solutions to

p-facilities problems, are based on the construction of aoNor Tesselation ([11], [14]).

B. Dynamic Deployment and Distributed Solutions

The use of moving, instead of static, sensor networks peogidreatiexibility in solving
sensing tasks, mainly when the environment is partially angletely unknown or is not
directly accessible for safety reasons. In these casesoiseare usually initially deployed
randomly and hence need to move in order to acquire knowletitfee environment and to
optimally re-deploy for their task. Furthermore, enviramts are usually not static and the
network may experience sensor failure or loss. In thesatsios the properties of adaptivity
and reconfigurability owned by a network of moving sensora twt very useful.

A general tendency in robotic networks is to have sensomntay endowed with the same
computational and sensing capabilities. This choice amae the overall robustness of the net-
work, but usually calls for distributed coordination algiems. Having equal sensors, indeed,
naturally leads to define optimization and coordinatioroatgms based on local observations
and local decisions ([15], [16], [17]). Many of the algomntk proposed in the previous section
involve the solution of a global optimization problem retug a complete knowledge of the
environment and of sensors’ distribution. The solutions-tenter p-dispersion ang-median
problems proposed in [7], [10], [18], instead, are all sgitidistributed, with the meaning
that each sensor requires only the knowledge of positiongsaieighbors (or even less if
it has a limited sensing radius). This fact allows a disteduimplementation where each
sensor computes its next movement without centralizeddooation.

Other solutions to the area-coverage problem look at seitigerparticles subject to virtual
forces or potential fields. The compositions of suitably rkdi attractive and repulsive forces
is then used to make the network behaving in the desireddasfspread sensors, avoid
obstacles, keep connectivity, etc.). Representativehierkind of approach are the algorithms
presented in [19], [20], or in [21], where also secure cotimig issues are considered. In
[22], instead, it is raised the relevant problem of powerstonption in wireless networks

and three energy-efficient algorithms are presented fasameshdeployment.

February 8, 2010 DRAFT



C. Network-like Environments and Paper Contributions

In this paper, we focus on network-like environments asetlaee surveillance or monitoring
problems where such a kind of model can provide a more saitads$cription.

Network models represent a natural choice whenever envieots have an intrinsic net-
work structure. It is the case, for instance, when sensors ttabe optimally deployed over
a network of roads to monitor vehicular traffic, or in a riveatwork to measure temperature
or pollutants concentration. Even some location-all@rafroblems can involve networks.
Consider, for instance, the case where useful facilitiess §chools, hospitals) have to be
located in the interior of a network of roads, which is therseuof a nuisance (i.e. noise,
pollutants), with the goal of minimizing its harmful impacth them (see [5] for the case
with one facility) or the dual problem of locating obnoxious facilities (i.enaps, industrial
plants, mobile phone repeater antennas) reducing the chamathe network.

Most notably, we think that a network-like model can provale effective and compact
description for complex environments, focusing only on ondgatures and abstracting from
those geometrical details which are less important for g@dayment problem. The coverage
of nonconvex environments with holes or obstacles, fomamst, is a challenging task ([23]),
which can enjoy significantly the use of a reduced netwdd&-lnodel. Environments with
a complex structure, accounting for a large number of vatjogized and shaped rooms,
passages, forbidden areas and obstacles, can be reducestt@faconnected paths where
the sensing task is more requested or where sensors are torgass. An airport is a very
representative example of this kind of environments. Is ttase people moving throughout
the airport can be aptly compared with a netwéidw and focus can be on paths more than
on corridors, halls and lounges.

Many of the problems introduced in previous sections havwenbermulated even for
a network-like environment ([24], [25]), but they usuallpnsider a finite discrete set of
demand points located on the network’s nodes and try to ag#ithe locations of facilities
w.r.t. some objective function accounting for the distafroen them. An important thread
of works for the deployment of sensors both on plane and ontwonle is represented by
the papers [26], [27], [28]. In such works, the authors pegppowerful greedy algorithms
that provide a constant approximation of the optimal sohlutiTheir method, however, aims
at solving a global static deployment problem, considedrfqite set of demand points and

allowing sensors to jump among positions.
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In this paper, instead, we consider a deployment problenmrevensors use local informa-
tion to dynamically solve the optimization problem whil@yhare moving in the environment.
The constraints induced by the environment to the motioren$ars are explicitly considered.
More precisely, we address a generaligadedian problem involving omnidirectional sensors
with potentially limited sensing radius and we extend themialation presented in [18],
[10], [16] to network-like environments. The task is to finehsors’ positions that optimize
an objective function defined on the network and accountorgttie sensor’s features and
preferential areas. This is a mixed problem, since the né&tws considered embedded in
the plane (it is a continuous set of demand points) and theaplauclidean norm is used to
measure the distance between sensors and network.

The core of the cited formulation and of our solution is a dige-time gradient ascent
algorithm based on Voronoi partitions and aiming at maxingzthe objective function. It
is a well known fact, however, that such a kind of algorithnas get stuck early in local
optima, especially when sensors are forced to move in ananrestrained environment like
a network. Moreover, the local maximum found by the algonitts often greatly related to
the initial sensors’ position.

For these reasons, we present a novel two-step procedui@mpig an initial coarse
optimization, whose purpose is to provide a good startingtdor a second finer optimiza-
tion. The first step can be carried out off-line, either by ated unit, or by each sensor
individually (without doing real movements). The impact lotal optima is reduced by
allowing sensors, in the initial optimization, to virtualnove inR? and to vary their sensing
radius arbitrarily. In order to reduce the complexity ofstiphase, sensors can be initially
clustered and the optimization problem solved for the elsstcenters. After that, a desired
number of sensors is spread close to clusters’ centers ansetisors’ positions thus found
are projected on the closest edges of the network. The peodjgmsitions are then used in
the second optimization, where sensors are constrainedte mnly on the network. The
second step can be performed on-line, in a distributed dasty sensors moving in the real
environment.

The use of a two-step procedure is motivated also by the vatyre of some surveil-
lance tasks, such as for instance airport surveillanceyavhearge number of individuals
(sometimes referred to as mass objects [29]) are monittmatiese cases, sensors can solve
the first step optimization using imprecise or estimatedrimgtion and keeping stlithen

they can move to reach the final projected positions usingngld routes compatible with
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the network. After this initial deployment, sensors canngetheir positions by dynamically
solving a distributed optimization problem (second steggdal on real measures taken from
the (potentially varying) environment.

It is worth noting that the present procedure can be usedite $oth static and dynamic
deployment problems. Moreover, the first step deservestatteby its own, since it provides a
solution to those problems involving facilities locatedie interior of the network mentioned
at the beginning of this section.

Another contribution of this paper is the introduction ofimglified model of the network
(similar to the discretization in [30]) callecbllapsed networland consisting of finite many
points. It is obtained by decomposing each segment of thggnati network in one or more
sub-segments and collapsing each sub-segment in its Ioéeyc€&his model allows a coarser
but faster optimization, since computations with baryeen@are remarkably less than those
needed by the full network. Collapsed network, hence, isnidéd mainly for fastening the
first optimization, but can be used profitably also for theoselcstep. Indeed, it turns out
particularly useful in practical implementation involgitardware with limited computational
capabilities.

As mentioned above, our work is related to that of [18], [1A}]. In particular, the
first step of the optimization, allowing sensors to moveRA, could be regarded as a
specialization of the problem described in [10]. Howevée tifferent topology induced
by the network introduces issues related to the explicit matation of the gradient and to
the convergence of the maximization algorithm, which desapecial solutions. A relevant
difference is that the gradient of the objective functioegants discontinuity points caused
by barycenters on the boundary edge of two neighboring \d@roells. Such barycenters
can change allocation during sensors’ motion, inducingiatovariations to the value of the
objective function associated to each cell. This fact pneva classical convergence proof for
gradient algorithms, hence we consider our proof as a miootribution of the paper. Some
results about convergence may alternatively be derivedsinguhe method of Kushner and
Borkar ([31], [32]) of stochastic approximation to deal kvivur differential inclusion.

The outline of the paper is as follows. In section Il the mathgcal definitions of
sensors, network and Voronoi covering are introduced aleitly the objective function to
be maximized to solve the deployment problem. Section lidlesoted to the introduction
of the collapsed network and to the formulation, and prootofivergence, of a gradient

ascent algorithm to solve the first step (subsection IlI-A)l ahe second step (subsection
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[1I-B) of the optimization procedure. Section IV addressles solution of the second step
optimization involving the full network. Finally, a netwodescribing an airport environment
is used in section V to illustrate by simulations the effestiess of the proposed optimization

procedure. Conclusions and future research directionsep@ted in section VI.

[I. PRELIMINARIES AND PROBLEM FORMULATION

In this section we introduce the mathematical framework éscdbe the sensors, the
network and its Voronoi covering.

Definition 1: Given two pointsp;, p, € R?, with p; # ps, 512 = [p1,p2] C R? is the
segment joiningy; andp, ands{, = (p1,p2) is the open segment between them. We define
length of a segment;; as/(si2) = ||p2 — p1||, where||-|| is the Euclidean nortrbarycenter
of a segment;, the pointb(si2) = 3 (p2 + p1) € s12; partition of a segment = [py, po] in

k sub-segments, the set of segmefds,_, , given by

.....

(pz —pl) P +Z.(102 —pl)

si:[pljt(i—l) P ?

Definition 2: A network N’ = (V, S) is a subset ofR? consisting of a set of pointy =
{vi,...,v, ER?, v; #v; Vi # j} and a set of segment$ C {s;; = [v;,v;] C R?, 4,j €
{1,...,n} i # j}, such that:

i) Yv; € V, Ju; € V, v; # v; such thats;; € S (no isolated vertex)

i) Vi, j,h, k€ {1,....n}, (i,7) # (h, k), s3; 0 sp), = 0 (no segment intersection).

Definition 3: Given a network\ and a set of point® = {p1,...,p.} C N, the Voronoi
covering of V' generated byP with respect to the Euclidean norm is the collection of sets

{VN(P)} ) defined by

ie{l,...,
VNP)={qeN|lg—pl < la—psll, Vp; € P}.

Remark 4:1t is straightforward to recognize that’V'(P) can be equivalently defined
as VN(P) = Vi(P) N N, whereV;(P) is the i-th cell of the usual Voronoi partition of
R? generated byP. The previous definition is about a covering and not a partitince
neighboring cells can have a nontrivial intersection: diporof a segment can belong to the
shared edge of two cellg;(P) andV;(P).

We adapt the framework provided in [18] to describe the sehsmd network features.
Each sensor is modeled by the (sarpe)yformance functiory : R, — R, that is a non-

increasing and piecewise differentiable map having a fimit@ber of bounded discontinuities
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atRy,...,Ry € R, with R; < ... < Ry. We can setRy = 0, Ry, = +oo and write
N+1

Zfa Q1Ra() (1)

with f, : [Ra—1,Ra)] = R, a € {1,...,N + 1} non-increasing continuously differentiable
functions such thaf,(R.) > fat1(Ra) for a € {1,..., N}. In order to model regions of
the network with different importance, we can usdemsity function : N' — R, which is

bounded and measurable @A Given g : R> — R we indicate by/ g(q)dq (respectively
N

/ g(q)dq) the sum of the linear integrals of over the segments of/ (respectively
VN(P)

V/v (P)) using an arc-length parameterization. With these funstiwe can define the multi-
center functior{ : N — R for m sensors located i® = {p1,...,pm} CN

H(P)= [ max f(llg—pil)¢(q)dg. 2
N 1€{L,...,m}

We can also provide an alternative expression for (2) base¢kdeoVoronoi covering induced

by P as follows

m

H<P>=;/V_N(P) la—pl)o@da— 3 / Flla-pl)é(@ds @

AN eAN
where AN, £ VN(P)NVN(P) andAN & {AN | h <k, Vh,k € {1,...,m}}. The second
term in (3) is not null if and only if there exists a non triviségments C s;; € S such that

s C Ay for somei,j € {1,...,n} andh, k€ {1,...,m}.

[11. DEPLOYMENT OVER ACOLLAPSED NETWORK

In a collapsed network each segment of the original netwsrddcomposed in one or
more sub-segments and each sub-segment is collapsed mrytsehter. Chosen a value for
r guaranteeing a good approximation, we can buildstimellapsed networlC? as follows:

Definition 5 ¢-Collapsed Network):Given a network\' = (V,S) andr > 0, Vs € S
consider its partition ink; = [&vﬂ sub-segments; (having at most length) and the
associated set of barycente®(s;)};_, , . We define ther-collapsed network associated
to \V the set of pointg? = Uses {b(s0)iin, .-

The multi-center function must be re-defined since the natiggn domain is now a discrete

set represented by the barycenters. Hence we set
H(P) = emnax  f([lbe = pill) o 4)
where ¢, are suitable (density) weights assigned to barycenters.
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A. Sensors Moving iiR?

In this section we solve the deployment problem for a cobapeetwork and sensors
moving in R?, which constitutes the first step of our optimization praged

Also for the multi-center function (4) we can provide an aiedive expression using the
Voronoi covering. We need the following definitibn

Definition 6: Given anr-collapsed networkC? for somer € R, and a set of points
P = {p1,...,pm} C R?, the Voronoi covering o’ generated byP with respect to the

Euclidean norm is the collection of se{ﬁ@cy(P)} , defined by

€{1,...,m
N
V(P ={bec [lIb—pl <Ib—pill, p; € P}.

We define also the boundary of a Voronoi cell as
N
oV (P)={becy | |b—pll=Ilb—p;ll, ¥p; € P},
and, in order to simplify the problem, we make the followirgsamption
Assumption 7:8KC”A‘V(P) =0 Vie{l,...,m}
With this assumption the multi-center function (4) can bdétem also as

HP) =Y > FlIbe = pill) b, (5)

= N
“heevt ()

H(P)= ) f(dist(be. P)) . (6)
beeCN
Remark 8:H(P) is not globally Lipschitz agf(-) is not a continuous function. However,
if f(z) is continuous and piecewise differentiable with boundedvdsve, thenH(P) is
globally Lipschitz. In order to prove the global Lipschitartinuity, let us consider two sets

of pointsP = {py,...,pn} CRZand P’ = {p},...,p, } C R? and compute

H(P) —H(P') = Y [f (dist(be, P)) — f (dist(be, P"))] o,

becCN
< Z %H |dist(be, P) — dist(be, P")| ds
— ax € € e

becCN 00

af :
< ZJ _
< (z%) %] 171
be€CN oo

IFor this definition similar remarks as Remark 4 also apply.
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10

where||9L|| _ is the Lo.-norm of &L
Theorem 9:The multi-center functiort is continuously differentiable ofR?)™\ (Dex) "™,

where
Doy 2, oo {0 € R | o —all = R, Vi=1,..., N}

is the discontinuity set of (-) in R%. Moreover, for eacth € {1,...,m}

OH(P) 0
- a be - e " 7
o = 2 o (el @)
be€VLT (P)
Proof: The continuous differentiability ot on (R?)™\ (Dex)™ is a straight conse-

quence of the same property ¢f-) on R*\ Dcv. As concerns the gradient, using (6) we

have
OH(P) 0 :
= — dist(be, P)) o,
o 8phb§f( (be, P)) &
0 .
:§:yﬁmm@m»%.
boeCN Ph

.....

has cardinalityl. Hence,vb. such thatl,. =i # h, %f (dist(be, P)) = 0 and

OH(P o
8( - > 5, Ulbe = pall) ..
P eV T =ny PP
whereby the thesis follows using the definitionif" (). =

The sensors’ location-allocation problem can be addrebgetheans of a gradient-like
algorithm. If a continuous time implementation is looked tbe following fictitious dynamics

would be associated to the sensors’ positions
P = VH(P). (8)

Unfortunately, this dynamics conveys some problems. Itedl defined as long as Assump-
tion 7 and Theorem 9 are fulfilled, but these hypotheses aréadt, too stringent for the
algorithm to work properly. Indeed, they would require tiwelation of the sensors to avoid
any position in the discontinuity set and the barycentetsmenter or exit the Voronoi cells
where they are at the initial time instant.

First of all we can reduce the analysis to continuously diiféiable functions to avoid
issues related to the existence of the gradient. Still thexagion of Assumption 7 induces

some problems on the definition of the gradient. Barycentersa boundary edge of a
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11

Voronoi cell belong to all the cells sharing that edge. Alhsers’ positions producing these
configurations are discontinuity points far+(?). Roughly speaking, the gradient takes
different values depending on which cell the shared batgcsrare assumed to belong to.
This fact makes the equation (8) a set of differential equatiwith discontinuous right-hand
side.

The problem of shared barycenters can be solved by addingi@odgaphic criterion
to the definitions based on the euclidean distance. Inded&l, this criterion barycenters
on boundary edges are allocated univocally to the sensandnaie lower index (w.r.t.
the Lexicographic Order (L.O.)) among sharing sensorss Tact allows us to define a
genuine Voronoi partition, no longer a covering, whose geneell is given by (compare
with Definition 6):

N
VE(P)={becy|llb—pll <lb—pll ¥p, €P A

(2

16— pill < [|b—py]| if j <iw.rt the L.O}. (9)

We must now define a generalized (lexicographic) gradiert{ o, (P), according to
this new definition.vb. € V;C%V(P) \ 8Vf"N(P) we use the classical formula given by (7).
Vb, € 81/;@«(77) notice that the partial derivative of, %f (I1be — prll), exists and is well
defined. In the light of this remark we can write theth component of the generalized
(lexicographic) gradient oH as

OH(P) a

0
oo > gy (b=l du, (10)

bV (P)
which is formally equal to the formula (7) provided by Theor®.

The differential equation using this new definition for thradjent, however, does not imply
the existence and uniqueness of the solution, and this pnagfturn out to be complex due
to special sensors’ and barycenters’ configurations. M@edhe formula (10) accounts only
for the infinitesimal perturbations of sensors’ positiont mmlucing any barycenters to enter
or exit Voronoi cells, hence changing their allocation.

In order to simplify the convergence proof and to provide &orthm which is more
suitable for a realistic implementation, we consider hedleserete-time version of the gradient
algorithm. In our case, the discrete-time implementatian overcome the problems with
discontinuity gradients due to the properties of the fuorc# and its discontinuity points,

as it is shown by the following theorem.
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Theorem 10:Consider the following discrete-time evolution for the sers’ positions
PED = pE) 5,V H(P®), (11)

where theh-th component ofV;H is given by (10) and? : R*" — R as in (5). If f(-) has
locally bounded second derivatives, then, for suitahleP*) lies in a bounded set and
i) H(P™®) is monotonically nondecreasing
i) P*) converges to the set of critical points #f.

Proof: It is easy to see that there exists a balD N such that, ifp; € 0B, thenle P)
points insideB. Thus the fact thaP®) is bounded fow,, sufficiently small, easily foIIows.
According to the definition in equation (9) of a Voronoi cedling the lexicographic rule, we
can define

My, (P) = Z £ (lbe = pill) e

beeVY Y P

hence we can writ¢{(P) = > H, (P). We must prove that, (P*+)) > H, (P®)

=1
for ¥p; € P® obeying the discrete-time evolution (11) and tiat € P®* such that
H,, (PEHD) > 1, (P®) if P*) does not belong to the set of critical pointsf
Define HY (P*+1) = Z f ( (+1) ) oy, that is the cost,,(-) computed

beeV T (P()
by using the new sensors’ positiof$*+ but the old allocation of barycenters to sensors,

i.e. the Voronoi partition generated ®*). Therefore, we write

He (PEY) = H,, (PW + 6,V H(PH))

4 (k) .
— H,, (P®) + 4L (%f) ~ (le<7?<’€>>)@.) o (0L
4 NIONIE 4
— H, (P®) 1 5 %f) o ((6172). (12)

where the (generalized) gradient is computed by means déximgraphic assignment based
on the Voronoi partition generated B,

If the Voronoi partitions generated *+Y and P*) coincide (same barycenters’ al-
location), then,, (P*+) = H (P*+1) and we can assert directly that, (P*+1)) >
H,. (P®) or H,, (P*D) > M, (P®) if M # 0, that is if P*) does not belong to the
set of critical points ofH. It is worth noting that similar remarks about the strictqoality
apply also in what follows and they will not be repeated. k& tharycenters’ allocation is

different, ,, (P**1)) may be smaller thai® (P*)) and we cannot say anything about its
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relation with 7, (P®). This fact is due to the presence of barycenters changiogadibn
during the sensors’ evolution, hence the cells involvedhim ¢hange cannot be considered
independently.

Let us consider for simplicity only one barycenter € VjC’J"v(P(’f)) and suppose that at

stepk+1 b, € Viw (P+1), With this assumption no barycenters can enter or exit thenun

) én.

b — piF Y H) .. (13)

of the two cells but.. We have

b — (k+1)

H (PUH) = s (PO + f (

Hy, (POH0) = s (PO0) — f (

In other wordsH,, (P**1) is grown w.r.t. the ideal valug/® (P*+1) due to the allocation of

b to Y, whereast,, (P*+V) is decreased w.r.t{2 (P*+1) by the contribution tha,

k+1)

would have given if it were allocated psé even at the step+ 1. It is worth noting that if

k+1) k+1)

<

( ( ;
j i be — p; be — p; (the equality

holds only ifb, € 8Vicy (PU+1) ﬂ&VfTN(P(’““)) and, being < j, the allocation is induced
] >
)

b. changes allocation from*"™ to p*™™| then

by the lexicographic rule). Therefore, due to the monoibniof f, f(
f ( b, — p(k+1)

J

). Summing up, we have

Hy (PETD) 4 H,, (PET) > Het (PRHD) 4 o (PUHY)

2

oK. (P |
= 1, (P®) 4 61 | P o (0y2)
Ip;
N om, (p®@) | ,
+H,, (P®) + 6} 7%; ) +0((6])%).
J

There exist some constants, 5/ > 0 such that
Hy (PED) 4 Hy, (PED) = H,, (PW) + 1, (PY) 4 66 + 0 ((67)7)

Extending the same reasoning to more complex configurativzdving more than one
common boundary edge and more than two neighboring cellssamesay thatic,, 6, > 0
such that

m

HPED) =3 "H,, (PE) > H(PW) + dyei, + 0(5}).

=1
This proves assertion i).
Assertion ii) can be proved by exploiting the results of #&c8.2 of [18]. More precisely,

using the fact thaP® is bounded and has locally bounded second derivatives, then there
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existsd > 0 such that we can choosg > §. Then we conclude, using Proposition 3.4 of
[18], that assertion ii) is true. [ ]

Remark 11 (Distributed ImplementationJthe use of a gradient ascent algorithm based
on a Voronoi partition, allows us to solve not only a statipldgment problem, but also
a dynamic one. As shown in [18], this kind of algorithms ist&ly distributed, with the
meaning that the-th sensor needs only to know the position of its neighborornder
to determine the boundary of its cell and, hence, to comggzge. For the same reason
the i-th sensor can choose the value of the step-§jzemdependently of the other sensors
simply performing locally a classical line search alganthrhis property makes the algorithm
suitable for a spatially distributed implementation.

The independence in the choice of the step-sizeis obviously preserved in each period
k, as long as a synchronous implementation is consideredhidncase sensors have access
to a global clock, or perform a synchronization algorithnt.tlhe beginning of the thé-th
period (instant), all sensors are idle, build their Voronoi cells and conepileir gradients
and step-sizes, then they move until, at most, the end ofeéheg(instant ). If, instead,
an asynchronous implementation is considered, furtheothyses are necessary to ensure
that independence is preserved. Unfortunately, the disuoty of the gradient prevent us
from using the results of [33]. But, if a sensor has the cdpgld detect when its neighbors
start and stop moving and when a new sensor joins the neigbbdr the asynchronous
algorithm presented in [10] (Table IV), can be applied, tlwsomatically recovering the
independence.

Remark 12:In the previous theorem, for sake of simplicity, we did nohsider degenerate
configurations where different sensors have the same @ogjti = p, for i # j). But it can
be proved that if the initial positions of sensors are noetegate, sensors can always choose

a suitabled! to avoid the occurrence of these configurations.

B. Sensors Moving on the Network

This section is devoted to the case of sensors constrainewtbte® on the network and
sensing a collapsed network. Therefore, these resultsugtgble for an implementation of
the second step of our procedure on hardware with limitedpcdational capabilities.

We still assumef(-) to be a continuously differentiable function and we make afsthe

lexicographic criterion for the barycenter allocation. é&mncerns sensors’ motion, however,
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we cannot use directly the gradient since the sensors haverain on the network. We
must consider now the directional derivative lgfalong the edges of the network.
Following the guidelines of the previous section, the felleg theorem can be proved.
Theorem 13:Given a network\' = (V,S) and the related-collapsed networkC,
the multi-center functiorf{ is continuously differentiable almost everywhere &fi". In
particular, on each open segmeit such thats;; € S, given the unit vectorw;; such that
sij - wi; = ||s4||, the directional derivative ip, € sg; alongw; is

OH
Do, H(P)[pn] = [ ==
OH

Opn

= 3 a%ﬂnbe—phume.

N
be€Vy" (P)
The directional derivative is a multivalued function on thetices of the network as more

than one edge can share the same vertex, but we need a urdedication. Hence, we fix a
choice rule such that the directional derivative in a vertegiven by the maximum among
all the derivatives defined for each possible direction tha#s not lead the sensor out of
the network. If all the directional derivatives in a vertesiqt outward the network, then the
derivative is set equal to zero.

Definition 14: Given the set

Sy ={s€S8|F; €V,36>0s.t.s=v,v]Vs=[v,v],

V6 € [0,0] v; + 0D, H(P)[v;] € N}, (15)

we define the directional derivative &f(7) in any pointp, € A/ as follows

Dy, H(P)[pr] given by (14)  Vp, e N\ V
. max Dy, H(P)[p] = eV
DyH(P) = 8ij €5, Sy, # 0 (16)
N =; € %
0 Pn =V
Sy, =0

We can now define the discrete-time gradient-like algorithm

Theorem 15:Consider the following discrete-time evolution for the sers’ positions

P = pH) 5, DH(PW), (17)
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where theh-th component ofDH is given by (16) andH : N™ — R as in (5). If f(-) has
locally bounded second derivatives, then, for suitahleP® lies in a bounded set and
i) H(P"®) is monotonically nondecreasing
i)  P® converges to the set of critical points f.
Proof: The proof is essentially the same of the Theorem 10, exceghéuse of the

derivative (16) in place of the gradient (10). In particudguality (12) becomes

He (PEHD) = K, (PW + 5 DH(P®))

OH,, (P™W)
Op;

- (OH,,(P® 2 A
= 1, (P®) 1 5 (% - whl) Fo((61)?),

for p; moving alongwy,. [ |

= (P) 0 (B

) +o (i)

2

IV. DEPLOYMENT OVER AFULL NETWORK

In this section we consider a more accurate version of thensestep of the optimization
procedure, namely sensors constrained on the network aisthgethe full network. To start
with, let us define the boundary of a Voronoi cell @88V (P) = {q € N | |l¢g—pil| =
lg — p;ll, 3p; € P}, and the instantaneous discontinuity setf¢f) as

Dw(P) 2, e €N [lla—psll = R, ¥i= 1., N}

Assumption 16\We make the following assumptions:

i) orthogonality assumptionth, k € {1,...,n}, Vi € {1,...,m} and for any segment
s=1la,b] C spp € S With a #b, s ¢ VN (P);

i)y  OVN(P)NDN(P)=0,Vic{l,...,m};

i)  VYNDux(P) =0,

V)  Vhke{l,....n},Vic{l,...,m},Vq € sp NVN(P), if (¢ —p)- (vy —vg) =
0= llg —pill ¢ {R1,..., Rn};

With the orthogonality assumption the expression (3) diiegl to

LGRS /V o 0= (@) (18)

Theorem 17:Given a networkN" = (V,S) if Assumption 16 holds, the multi-center

function H is continuously differentiable almost everywhere &f. In particular, on each
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open segment?; such thats;; € S, given the unit vectow;; such thats;; - w;; = ||si], the

directional derivative irp, € s7; alongw; is

Doy H(P)[pn] = (g—th(P) 'wz‘j> Wi (19)
OH My, (P)
8—ph(P) kz:; Iy
I 9 Ph— (1)
L A Mauf ) - Gl PO
N —
+||bk _akHZ<fa+1(Ra) ZH]]ZZ _z]l: )H(ﬁ(f)/k(ti,j» '

wherey,(t) = ax+ (by — ag) t, t € [0,1] is a parameterization for theth segmentay, b;| €
VN(P), My(P) is the number of segments iV (P) andtt ; € [0,1], j € {1,2} are the
zeros of||vx(t) — pr|| — Ra = 0 (if any).

Proof: Consider the gradient df{/(P) in the form (18)

2? aphZ/ £ (lg = pill) 6 () da

= i =P 0@ 1

aphz ! =)o@ (20
z;éh

Let us consider the second term of (20) for eachh

0
- — p; d
6,ph/VZN(P)f(Ilq pill) ¢ (q) dq

1
= li — Di dq — — Di d
lin 7o (/%N({pl 77777 . pm})f(llq pill) ¢ (q) dg /le(p)f(Hq pill) ¢ (q) Q)
1
=1 —Dpi dq — T Pi dq |, 21
lin o (/Avmpﬁf(llq pill) & (q) dg /A%%(P)f(||q pill) ¢ (q) q> (21)
where AV (P)* = VN({p1, - oon+e - pm})  \ VM(P)  and

AVN(P)” = VN(PON\VN{p1,...,pnte, ..., pm}). Itis worth noting that/’N ({p1, . .., pr+
,pm}) can be different froniZV (P) if and only if p; € Ng, (pn, P).2

SR

2With N, (pn, P) we represent the set of neighborsygfin P. The neighboring property is given w.r.t. the proximity
graphGp(P), that is the Delaunay graph associated to the Voronoi fmartinduced byP.
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Let us consider now the first term of (20)

19)
S g 0= P2l (@)
1
= lim — — da — _ d
20 el </\/N({p1 ..... P m})f(Hq B+l 4 a) ds /h( )f(Hq Pl ¢ (@) q)
T (F (la= (on+ ) = £ (lla = pul)) 6 (a) da
LY

{pl ----- PhtE;..., pm})

1
lim — — dq — — d
iy ( Lo Sla=mo@a [ J(la=nl)o q>

~~~~~ h

—tim— [ (Fla=n ) = F(la—pal)) 6 (a) da
=0 |le[| Jya ey
4 lim — (g — o+ ) — £ Ul — pal)) & () dg
=0 ||| AVN (P)+
i (F (lg— o+ ) — £ Ul — pal)) & () dg
=0 ||| AVN (P)-

1
lim ——- - dg — — dg|, (22
ol (/Mmf(”q ) 6 (q) dg /Mmfp)ﬂnq o) 6 () q> (22)

where AV (P)* = VN{pi, - pn+e o))\ VV(P)  and
AVA(P) = VNP V¥ (b1 pn &0 D))

Now we want to prove that the sum of the second term of (20) hedast term of (22) is
null. First of all, recall that the sum in the second term d@f)(@an be limited to the cells in the
neighborhood of thé-th cell, namelyvi € I, with I;, = {j € {1,...,m} | p; € Ng, (pn, P)}.
This fact implies thaneIh (AVN(P)* UAVY (P)~) = AV (P)TUAV;Y (P)~. Moreover
it can be easily seen thakV (P)t ¢ AV (P)~ and AVY (P)~ ¢ AV (P)* Vi € I,.
Indeed, any segment € AVV(P)* is such thats € VN({p1,...,pn +¢,...,pm}) and

s & VN(P), and, for any infinitesimal perturbation of,, it is possible only ifs € V' (P)
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ands & VN({p1,...,pn +¢,...,pm}), hence ifs € AV (P)~. Therefore we have

—Z/ £ (la—pil) 6 (a) dg

iely

= lim — — da — _p; d
;%Hg@(/wp)f (lla = pill) ¢ () dg /A iy 126 @) q>

. 1
~lim / <r|q—pi||>¢<q>dq—/ 7 (la = pill) & () dq
=0 [le]] Uier, AVin N(P)+ Uier, AV (P)~

= lim (/ o Fla=phe@dn— [ flla-plow dq) .
AV (P) AV (P)H
The conclusion follows from the fact thitn. ., (AVY (P)* U AV (P)~) = V¥ (P) and
Vg € OVN(P) |l¢ — pill = llg — pnll. As concerns the second-last term of (22), recalling
again thatlim._, (AVY(P)* U AV (P)~) = oV;N(P) and the Assumptions 16, we can

write

1
i (f(lg = (on+2)) = £ (la — pall)) 6 (q) dg
=0 [e]l Javy )+
1 8f

< lmor [T r——7

=0 [|e]| AVN (P)+ ox 10,diam(A")] (0,diam(N)]
o gf 10110 gty 1 (AVRR(P)F) =0,

e=0 1 0T |[ 10 diam(n))

wherediam(N) £ max, e || — p||- The same argument holds for the term wih;) (P)~,

hence we have

OH 1
7) —
Gt Y = S

- /V o5 U=l 0

(f (lg = (n + ) = £ (llg = pull)) ¢ (q) dg

(llg — prll) ¢ (¢) dg and
sk = [ax, by] € V;V(P). If we choose the parameterization(t ) = ap+ (b —ap)t, t €[0,1]

with M, (P) the number of segments iV (P) andZ;, = / Bor
for s, we can apply the Theorem 19 in appendix. Recall that in thée edz, ¢) = ||q — z||,
hence the equatioly,(t) — px|| — R. = 0 may have at most two zeros gf, andtf,
Va € {1,..., N}. It is worth noting that assumptions 16 iii) and iv) play héne same role
of assumptions i) and ii) in Theorem 19. Therefore, from thénition of f(-), equation (1),

we have the thesis. [ ]
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In order to define a gradient-like algorithm, also in thisegage must relax Assumptions
16. First of all, focus on the orthogonality assumption. dstbeen introduced to avoid the
presence of entire segments in the boundary of a cell, bedhese configurations induce
problems in the definition of the gradient (they represenhtgoon which the gradient may
assume different values). Even in this case we opt to useetheographic rule in order to
univocally assign a segment on the boundary to only one aetl, again, we consider a
discrete-time dynamics for the gradient-like algorithm.

Using the lexicographic rule, we re-define the Voronoi cslif@lows

VA(P)={a € N |lla—pill < lla—psll ¥ € P A
lg — pill < llg —pyll if j <iwrt. the L.O}

and verify that the expression (18) féf(P) is still formally correct. We remove the orthog-

onality hypothesis by adding to (19) &p term for each segment entirely included in the
boundary of a Voronoi cell. This fact does not change the esgon (19), since, with the

new definitionV;V (P), M,(P) accounts now also for segments on the boundary.

The relaxation of the other assumptions would imply someathisnuities in the integration
domain induced by the discontinuities of the functign These discontinuities, without
additional assumptions, would prevent us from guarangeéiif?) to be monotonically
nondecreasing along the evolution Bfgiven by the gradient dynamics. Hence, we assume
now f to be continuous and piecewise differentiable. Befhgontinuous, the second term
in Z in (19) is null.

As made in the previous section, the directional derivatiuest be univocally defined on
the vertices. To this aim, we use the expression (16) givéeiimition 14, but with reference
to the formula (19) for the directional derivative in a poimtthe interior of a segment. Using
these definitions we can state the following theorem.

Theorem 18:Consider the following discrete-time evolution for the sers’ positions
P = P 5, DH(PW), (23)

where theh-th component oDH is given by (16) and),,,, H(P)[ps] by (19) andH : N™* —
R as in (18). If f(-) has locally bounded second derivatives, then, for suitaple®™®) lies

in a bounded set and

i) H(P"®) is monotonically nondecreasing

i)  P® converges to the set of critical points #f.
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a 20 20 20 10 4 20 20 20 10 10 4
ce | 43 5 6 3.5 9 125 135 15 145 17 20
cy |23 4 55 5 85 85 72 62 105 9 7
o | 1.5 15 15 2 4 1.5 1.5 1.5 2 2 4
oy | 1.5 15 15 2 4 1.5 1.5 15 2 2 2

TABLE |

2 2
PARAMETER VALUES FOR THE11 GAUSSIAN FUNCTIONSG(a, ¢z, Cy, 0z, 0y) = aexp (— (uz‘-) - (ﬂl) )

MAKING UP THE DENSITY FUNCTION ¢.

Proof: As long as sensors’ configurations not violating orthogitpnalssumption are
considered, the gradient is smooth and the proof is canloriitdhe case of discontinuity
points, segments belonging to the boundary of a cell cangshafiocation during sensors’
motion. Hence, we can proceed as in the proof of Theorem 1QL&mreplacing barycenters
with segments. In particular, being a segment changing allocation, equations (13) are now
replaced by

Hy (PR = 12 (PRHD) 4+ T}

Pi

Hp.(P(kJrl)) _ Hu(P(k+1)> . I]Jﬂ

Py
with Z} = / a% (Ilg — »l]) ¢ (q) dg. Again, due to the fact that any pointe s, is such

Sh
that Hq — pgk“)H < Hq — p§-k+1)H and the monotonicity of, we haveZ! > 7/, whereby the
thesis follows as in the proof of Theorem 10. [ |

V. A CASE STUDY

In this section we apply the proposed two-step optimizagwacedure to a network
representing a wing of the Amsterdam Schiphol airport. Teevark is made up of3
vertices andi7 segments and the density functignis the sum ofl 1 Gaussian functions of
the formG(a, ¢, ¢y, 04, 0y) = aexp (— (My —

O oy

(MY) with parameters assuming the
values given in table I.

The network and a contour plot of the density function areashim fig. 1 (darker colors
denote preferential areas). For sake of providing a clesgplgcal representation, the density
function shown here is defined @&¥, but the one used in all simulations is restricted to the
network.
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Fig. 1. Network representing a wing of the Amsterdam ScHiglirort and contour plot of the density functiahused

in simulations (darker colors denote preferential areas).

The 50 sensors to be deployed have performance funcfion = % (1 — tanh (”f))
where R is a parameter considered as variable in the first step andcex$ ifi the second
step of the optimization. Even if the previous function déss sensors with an infinite
sensing radius, they will be represented as shaded cirbimjkmng to emphasize that the

performance function assumes values lesser th@hfor larger distances.

A. First step

The first step of the optimization is performed on a collapsetvork with collapsing factor
r = 0.3 (see the small dots along the grey network in fig. 2-a,-c)hsBes are grouped in
10 clusters of5 elements each, and each cluster is represented as a singta.S€lusters
set initially R = 10 and decrease linearly its value up taduring the simulation (compare
fig. 2-a) with fig. 2-c)). As apparent by thows in fig. 2-b), clusters are allowed to move
in R,

It is important to recall that, both the variation of the sagsadius and the unconstrained
motion of sensors are allowed in the first step as it is peréorwif-line. This step makes use
of the algorithm described in section IlI-A and is thoughtpimvide a good starting point
for the second step. However, if sensors are initially ledabn the network as in fig. 2-
a), they can execute the first step independently, usingapart rough information of the

environment, without moving, and then plan a route on thevoet to reach the previously
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computed final positions. Since final positions can be nothemitwork (see fig. 2-c)), they
must be projected on it to be reachable. Anyway, this prmedtas to be performed before

the second step to provide a valid starting point.

B. Second step

The second step considers a full network with sensors haixegl radiusk = 1 and
initially deployed in the positions shown in fig. 3-a). Sudasjpions are obtained by spreading
randomly5 sensors close to each cluster center and projecting themmeocldsest segments
of the network. Sensors now can take real measures from theement and perform the
optimization on-line, while moving, according to the algjom described in section IV. They
are constrained to move on the network as shown in fig. 3-malFiositions (see fig. 3-c))

show how sensors, originally clustered, diffused to bettser preferential areas (see fig 1).

VI. CONCLUSIONS ANDFUTURE WORKS

This paper focused on the problem of optimally deployingsses in an environment
modeled as a network. An optimization problem for the allmraof omnidirectional sensors
with potentially limited sensing radius has been formuat& novel two-step optimization
procedure based on a discrete-time gradient ascent &lgohias been presented. In order the
algorithm to not get stuck early in one of the many local miajnm the first (off-line) step,
sensors are allowed to move in the plane. Moreover, a redonmetel of the environment,
called collapsed network, and sensors’ clustering, ard tesspeed up the first optimization.
The positions found in the first step are then projected ométerork and used in the second
(on-line) finer optimization, where sensors are constchteemove only on the network.

The proposed procedure can be used to solve both static arainity deployment prob-
lems and the first step alone can provide solutions to logatimcation problems involving
facilities located in the interior of the network.

A main future research direction will consider the integmatof classical Operative Re-
search methods with the present gradient algorithm. Inquéet the first optimization could
be addressed by adapting methods and heuristics developetef solution of the multi-
source Weber problem ([9]). The aim is to build an overallbglooptimization technique to

solve location-allocation problems of large dimensionthwimany facilities. Moreover, future
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research, more related to deployment problems, will camsidher sensor’s models such as

those with limited sensing cone.

APPENDIX

Theorem 19:Let ¢ : R? x R, — R be a smooth function w.r.t. its second argument and a
non-increasing, piecewise differentiable map with a finisenber of bounded discontinuities
atRy,...,Ry € R, Ry < ... < Ry, W.It. its first argument. Let : R? x R> — R, be a
continuously differentiable map w.r.t. both its argumentst s = [a,b] C R? be a segment
and assume that

i) v(z,a),v(z,b) ¢ {Ry,...,Rn};

ii) Vq € [a,b], if Vv(z,q)- (b—a)=0=v(z,q) ¢ {R1,...,Rn},

then
4o (@) .q)d
i | @a).ad)
9 _ v (x,y(t))

= —ow(z,v({)),y({)) —————= b—alldt
/[071}\{t1177t1,k177tN177tN,kN}aV(10( ( 7( )) KY( )) ax =T || ||
= ov(z,1(1))

)Y (RS A (tig) — @Ry (L)) —2==| b=l
=1 j=1 t=t; ;

wherey(t) = a+ (b—a)t, t € [0,1] is a parameterization fos andt,; € [0,1], j €
{1,...,k;} are the zeros of(z,~(t)) — R; = 0.
Proof: By using the Dirac’s delta formalism we have

- gerrry

v=R;
With the chosen parameterization gfthe equationv/(z,~(t)) — R; = 0 may havek; zeros
ti; € [0,1], j € {1,...,k}. Thanks to i) and ii) the set of zerds; does not change

cardinality for x near z, thus, t;,; depends smoothly on. Recalling that for every arc

/ dx—/f ) 4O dt,
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and that for the special case ©f|(¢)|| = ||b — al|, the derivative becomes
d% o v(z.q).9)dg -
- /ﬂ)’l}\{tLl’“'vtl,kl7---7tN¢1,~~~,tN,kN}a;aV (v(z,~(t)), (1)) w . |b — al| dt
T /{wﬁ; (B2 (1) — (B, 7(1))) 0 (v — Ry) w - b — al| dt,

from which, using the property f(z)d (z — z)dx = f(z) for z € [I, u], we have the thesis.
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b)

c)

Fig. 2. First step of the optimization procedure for the dgpient over a collapsed network 86 sensors grouped in
10 clusters; a) initial positions of clusters (sensing radiis= 10) and related Voronoi partitigrb) gradient ascenfiows
February 8, 2010 DRAFT
(clusters allowed to move i?); ¢) final positions, not necessarily belonging to the netw(sknsing radiug? = 1) and

related Voronoi partition.
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b)

c)

Fig. 3. Second step of the optimization procedure for thdayepent of 50 sensors withR = 1 over a full network: a)
E'é @J r)(,)sg':“%fo()bta'md by spreading randortilgensors close to each cluster position found in the f'rSt(SmflgRKﬁcr))
and then projecting them on the network, related Voronoiitar; b) gradient ascerlows (sensors constrained to move

on the network)c) final positions and related Voronoi partition.



