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In this paper, we consider the problem of localizing a mobile vehicle moving in an unstructured environment, based on triangulation

measurements derived from processed optical information. The problem is shown to be intrinsically nonlinear, in the sense that the

linear approximation of the system has different structural properties than the original model. In particular, linearized approximations

are non–observable, while results obtained from differential–geometric nonlinear system theory prove the possibility of reconstructing

the position and orientation of the vehicle and the position of the obstacles in the environment from optical information.

1 Introduction

One of the main technical difficulties in applying mobile

robots to unstructured environments is the problem of lo-

calization of the vehicle with respect to the environment,

and of constructing a map of the environment itself. The

problem is important for instance for a rover exploring an

unknown terrain, such as was the case for the Sojourner

explorer in the recent NASA mission of Pathfinder on

Mars. On the other hand, many everiday applications

on Earth call for solutions to the same problem. There is

in fact a consolidated trend in industrial AGV systems to

move from traditional wire–guided systems to optically

guided systems, using laser or camera heads on the ve-

hicle to locate it on the factory floor. The advantage of

the latter techniques is apparent, in terms of drastically

reducing the cost and rigidity of fixed nets of active or

passive magnetic devices placed under the floor, and al-

lowing more variate trajectories to be executed by the

AGV’s. On the other hand, the technology of optical

localization is rather new, and several problems are still

encountered, related to both its technological aspects and

to methodology to be used in filtering and merging data

from different sources. A good treatment for these prob-

lems is that of Borenstein 2, and references therein.

In this paper, we deal with the problem of localiza-

tion and map building for a mobile vehicle endowed with

odometric and optical sensors (laser or camera heads).

In section 2 we recast the problem as one in nonlin-

ear observability, and results obtained from differential–

geometric nonlinear system theory are compared with

those resulting from a linearized model, showing how the

problem is intrinsically nonlinear. In section 3 we discuss

the use of an Extended Kalman Filter for the system un-

der consideration.

2 Observability

We consider a system comprised of a mobile vehicle, such

as a robotic rover in a planetary exploration mission,

which moves in an unknown environment with the aim

of localizing itself and the environment features (in the

rover case, e.g., rocks and geological formations). The ve-

hicle is endowed with a sensor head such as a radial laser

rangefinder or movable camera, whose data are assumed

here to have been preprocessed so as to yield a mea-

surement of the azimuth angle in the horizontal plane

between the line joining the obstacle features with the

head position, and the direction of movement of the ve-

hicle (or any other direction fixed w.r.t. the vehicle). An

information on distance of the target from the head is

not considered to be available, due to the fact that such

measurement is hard to obtain accurately from current

laser or camera sensors.

Both the vehicle initial position and orientation, and

the obstacle positions, are unknown (or, more generally,

known up to some apriori probability distribution). The

task is to reconstruct such information from angular mea-

surements.

A model of the system that captures most salient
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features of the problem, yet lends itself to simple ana-

lytical results, is used, which is based on the following

assumptions: the vehicle moves on a plane, and object

features are represented as points of the plane. Among

the features that the sensor head detects in the robot en-

vironment, we will distinguish between those belonging

to objects with unknown positions (which we shall call

targets), and those belonging to objects whose absolute

position is known, which will be referred to as markers.

The vehicle is a kinematic unicycle (this is the case

of NASA’s Sojourner, for instance), whose dynamics are

slow enough to be neglected (dynamics do not add much

to the problem structure, while considerably increase for-

mal complexity). The mathematical model is described

as:
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where ξ, ζ represent the coordinates of the position of

the vehicle with respect to some arbitrary fixed reference

frame, and θ is the angle between the ξ axis and the

direction of motion of the rover; ξi, ζi are the position

coordinates (in the same reference) of the i–th target;

u1 is the vehicle forward velocity, while u2 is its angular

velocity. Observe that the system is in the standard form

of nonlinear systems which are linear in control, i.e.

ẋ = g1(x)u1 + g2(x)u2.

The measurement process is modelled by N equa-

tions for target observations in the form

yi = hi(x) = π + atan2
ζ − ζi

ξ − ξi

− θ, i = 1, . . . , N, (2)

and by M further measurements relating to markers,

whose absolute position (ξ̄i, ζ̄i) is known, as

yi = hi(x) = π+atan2
ζ − ζ̄i

ξ − ξ̄i

−θ, i = N +1, . . . , N +M.

(3)

The localization problem is therefore stated, in terms

of the above model, as a problem of reconstructing the

initial state x(0) of the system (1) from measurement of

the M+N output angles y(t). The odometry information

is simply embodied in the fact that, in reconstructing the

state of the sytem, information on input velocities can

be used explicitely (i.e., in our kinematic model inputs

u1(t), u2(t) coincide with odometric measurements, up to

measurement errors).

The linear approximation of the system (about an

arbitrary initial state x̂ and zero control) is given by the

triplet (A,B,C) as follows:

A = 0(n+3)×(n+3); B =
[
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]
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where

ci,1 =
∂hi

∂ξ
= −

ζ̂ − ζ̂i

d2
i

i = 1, . . . , N

ci,2 =
∂hi

∂ζ
=

ξ̂ − ξ̂i

d2
i

i = 1, . . . , N

ci,1 =
∂hi

∂ξ
= −

ζ̂ − ζ̄i

d2
i

i = N + 1, . . . ,M + N

ci,2 =
∂hi

∂ζ
=

ξ̂ − ξ̄i

d2
i

i = N + 1, . . . ,M + N

and d2
i = (ξ̂ − ξ̂i)

2 + (ζ̂ − ζ̂i)
2, i = 1, . . . , N ; d2

i =

(ξ̂ − ξ̄i)
2 + (ζ̂ − ζ̄i)

2, i = N + 1, . . . , N + M . Because

of the absence of the drift term, the observability ma-

trix of the linearized system is C ∈ IR(M+N)×(2N+3),

and rank (C) = N + min(3,M + N) in generic config-

urations (i.e., assuming that no pair of markers and/or

targets are aligned with the head center). The unobserv-

able subspace has dimension N if M + N ≥ 3, or 3 − M

if M + N ≤ 3. Hence, the linearized system is always

unobservable if there are targets (N 6= 0), and can only

be observable if there are at least 3 markers (M ≥ 3).

This results contrast with intuition, and with the com-

mon practice in navigation and surveying of making the

point by triangulation, where the problem is solved with

M = 2, N = 0.

The observability analysis of the full nonlinear model

solves this apparent contradiction. Observe first that, if
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no markers are available, observations from the vehicle

will at most allow localization up to a rigid motion of

the plane where the vehicle and the targets lie; and that,

if one marker only is available, localization can be done

at most up to a rigid rotation of the plane about the

marker position. In the lack of an absolute reference (as

would be the case of a rover on a planet’s ground), we

will assume that a reference frame is fixed arbitrarily, by

choosing a fixed point as the origin and a fixed direction

as the ζ axis of the reference frame. This is tantamount to

considering one of the targets as a marker in the origin,

and another target as a second marker aligned on the

ζ axis (see fig.1). We will show in the following that

two markers are enough for completely reconstructing the

state of the system from measurementsa. Observability

Figure 1: A mobile robot in an unknown environment with markers

and targets

of system (1)–(2)–(3) can be checked (see e.g. the book

of Isidori 4) by computing the dimension of the smallest

codistribution that contains the output one–forms, and

is invariant with the control vector fields, in symbols

< g1,g2| span {dh1, dh2, . . . , dhN+M} >. Consider that

dh1 =
[

− ζ−ζ1

d2
1

ξ−ξ1

d2
1

−1 ζ−ζ1

d2
1
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1
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]

,

...
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d2
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d2
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d2
N
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d2
N

]

,

aIn fact, there is no need to assume that the distance a between the

two targets used as markers is known, for such an information can

be reconstructed from outputs as well. However, this assumption

will be made for the sake of reducing computations.

dhN+1 =
[

− ζ

d2
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ξ
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]

,

dhN+2 =
[

− ζ−a

d2
N+2

ξ

d2
N+2

−1 0 0 0 0 · · · 0 0
]

where d2
i = (ξ−ξi)

2+(ζ−ζi)
2, i = 1, . . . , N ; d2

N+1 = ξ2+

ζ2, d2
N+2 = ξ2+(ζ−a)2. Furthermore, the Lie derivatives

of these covector fields along the control vector fields are

easily computed as

Lg2
dhi = 0, i = 1, . . . , N + 2,

and

Lg1
dhi =

[

piSθ+qiCθ
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i
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,

for i = 1, . . . , N , where pi = (ζ − ζi)
2 − (ξ − ξi)

2, qi =

2(ξ − ξi)(ζ − ζi), Sθ = sinθ, and Cθ = cos θ. Also, we

have
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where pN+1 = ζ2−ξ2, qN+1 = 2ξζ, pN+2 = (ζ−a)2−ξ2,

qN+2 = 2ξ(ζ − a). Finally, compute
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Lg1
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Consider first the observability of the robot position

and orientation, i.e. the self–localization problem. De-

note Ω<1−3> the first three columns of the matrix
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In order for these columns to be independent, hence for

the localization of the vehicle to be distinguishable, it

suffices that either of the minors

det
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
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is non-zero. It can be easily checked that all these mi-

nors simultaneously vanish only in the case a = 0, which

means that the two markers coincideb.

In order to assess the possibility of reconstructing

the position of the i − th target, it suffices to study the

two minors

det

[

dh
<4+2(i−1)−5+2(i−1)>
i

Lg1
dh

<4+2(i−1)−5+2(i−1)>
i

]

;

det

[

dh
<4+2(i−1)−5+2(i−1)>
i

Lg2
Lg1

dh
<4+2(i−1)−5+2(i−1)>
i

]

,

which never vanish simultaneously. Complete observabil-

ity of the location of the vehicle and of targets with two

markers follows.

It may be of interest to notice that, if the vehicle

could only move along straight lines (i.e., g2 = 0), ob-

servability of the vehicle’s states and of the targets would

still hold, except for the cases where the vehicle moves

along the line joining the markers, and along a line point-

ing to some target, respectively (see fig.2, fig.3). If the

vehicle could only rotate, observability would be lost of

both vehicle and target positions (see fig.4).

3 EKF for localization

In this section we discuss the problem of building a filter

for the localization problem, or, in other words, a filter

that uses instantaneous knowledge of inputs and outputs

bsince it can be verified that span Ω<1−3> has dimension 2 in this

case, there exist a 1–dimensional submanifold of indistinguishable

locations, amounting to rotations of the robot about the origin

Figure 2: A vehicle that moves along straight lines cannot localize

itself if only if the trajectory aims at the two markers.

to estimate the state of system (1)–(2)–(3). This problem

is notoriously difficult, and a large number of papers have

been devoted to proposing different schemes for solving

it. The most common way of approaching the problem

is to use an Extended Kalman Filter. Several authors

underscored that EKF–based treatment of localization

data is often troublesome. Our direct experience in labo-

ratory with application of EKF to localization problems

has shown that the filter convergence properties are very

mcuh prone to initialization of filter parameters (mea-

surement and process covariances, e.g.), and is inclined

to unpredictably diverge at some points during explo-

ration.

Our previous discussion in section 1 showed that the

linear approximation of the system is not observable.

Since the EKF uses at each step the linear approxima-

tion of the system to observe its state, there are reasons

to be dubious about success of applying the EKF to the

localization problem.

To illustrate this, consider the EKF equations in con-

tinuous time (as derived e.g. by Gelb 3) for estimating

the state x ∈ IRn of a general nonlinear system (affine in

control). Let the system equations be

ẋ = f(x, t) + G(x, t)u(t) + q(t),

y = h(x, t) + r(t)

where u ∈ IRm, y ∈ IRm, and q ∈ IRn,q ∼ N(0,Q(t)),

r ∈ IRm, r ∼ N(0,R(t)) are zero–mean uncorrelated
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Figure 3: A vehicle that moves along straight lines cannot localize

a target if the vehicle aims at the target directly.

gaussian noises. Also let the initial conditions be x(0) ∼

N(xo,Po). For this system, the filter (see e.g. Gelb 3,

Misawa and Hedrick 5) is implemented by constructing

an identical model with estimated states x̂ ∈ IRn,

˙̂x = f(x̂, t) + G(x̂, t)u(t) + K(t)[y − h(x̂, t)],

K(t) = P(t)HT (x̂, t)R−1(t)

Ṗ(t) = F(x̂, t)P(t) + P(t)FT (x̂, t) + Q(t)+

−P(t)HT (x̂, t)R−1(t)H(x̂, t)P(t)

where

F(x̂, t) =
∂f(x, t)

∂x
,

H(x̂, t) =
∂h(x, t)

∂x
.

To illustrate problems potentially arising when using

this approach to localize a vehicle by triangulation, let us

refer to an even further simplified model of the vehicle

and of its observations. Consider a holonomic vehicle

that can freely translate in the plane where it moves,

without process noise (i.e., assuming perfect odometry is

available), as
[

ẋ1

ẋ2

]

=

[

u1

u2

]

(4)

This simple vehicle must be localized by triangulation

with respect to two markers placed in two distinct points

in the plane. Since the vehicle orientation is irrelevant to

its motion, only the difference between the angles under

Figure 4: A vehicle that can only rotate cannot localize itself.

which the markers are seen from the vehicle is relevant

to localization relative to the markers (i.e., up to a rigid

motion of the plane containing the vehicle and the mark-

ers). Therefore, we can consider a single measurement

output equation as

y′ = h′(x) = atan2((ax1), (x
2
1 + x2

2 − ax2)) + r′(t),

or simply (excluding the circle of radius a/2 centered in

(x1 = 0,x2 = a/2)) as

y = h(x) =
ax1

x2
1 + x2

2 − ax2
+ r(t),

where y is the angle between the rays from the vehicle to

the two markers. Assume for simplicity R(t) ≡ 1. From

fig.5, it appears clearly that a single noiseless measure-

ment would identify the position of the vehicle up to a

circle passing trough the two markers. Now consider the

construction of an EKF as described above,

x̂ = u + PHT (y − h(x̂)

Ṗ = −PHT HP

where

H =
[

a(x2
2−x2

1)−a2x2

(x2
1+x2

2−ax2)2
(a−2x2)ax1

(x2
1+x2

2−ax2)2

]

.

The dynamics of the observation error e = x̂−x are

simply ė = PHT [y−h(x̂)]. To verify convergence of the

estimates, consider the function V = eT e and its time
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derivative

V̇ = eT ė = (x̂ − x)T PHT [y − h(x̂)] (5)

= (x̂ − x)T PHT ∂h

∂x

∣

∣

∣

∣

x=x̂

(x − x̂) + O3(‖x̂ − x‖)(6)

= −eT PHT He + O3(‖e‖) (7)

(8)

Being P a symmetric positive definite matrix for all times

t < ∞, the first term on the right hand side of eq.8 is

positive semidifinite, vanishing only when e lies in the

nullspace of H. Therefore, whenever He 6= 0, there exists

ε such that ∀e : ‖e‖ < ε, the non–definite, order–three

term on the right hand side is dominated by the quadratic

term, and ‖e‖ decreases. However, if a trajectory of the

system exists such that e keeps within the nullspace of

H, then V , hence ‖e‖, may grow indefinitely.

The interpretation of this filtering mechanisms ap-

pears clearly from fig.5, when assuming P = pI for sim-

plicity. In fact, the direction of H = ∂h(x)
∂x

∣

∣

∣

x=x̂
at each

estimate x̂ is that of radius of the circle trough the mark-

ers and the current estimate, and its sense and magni-

tude is chosen according to the innovation y − h(x̂) and

to the gain p. Thus, when x̂ lies on an inner circle than

x (i.e., when h(x̂) > h(x)), the estimate is changed so as

to move x̂ outwards, and viceversa. Therefore, the filter

will not converge if the trajectory followed by the vehicle

is a circle through the two markers (y ≡ h(x̂)).

4 Optimal exploration paths

In the previous section we have seen that in the local-

ization problem, observability and convergence of filters

depend upon trajectories followed by the system, and

hence ultimately upon controls. Notice that this feature

is absolutely peculiar to nonlinear systems, as in the lin-

ear case the input has no role to play in the estimation

process.

In applications such as the exploration of a planet’s

soil by a robotic rover, besides the need to locate it-

self and targets w.r.t. to markers, the system is also

confronted with limitations in autonomy of motion, e.g.

in the total length of the path the vehicle can track in

one day. Therefore, when the localization problem is of

paramount importance, the problem arises of not wast-

ing any autonomy in “unuseful” trajectories, and rather

Figure 5: Interpretation of the Extended Kalman filter for local-

ization.

to choose among all the trajectories the one which will

maximize the overall estimation accuracy.

We can pose this problem as an optimal control prob-

lem as follows: maximize the functional

J(u) = −

∥

∥

∥

∥

∥

(

∫ T

0

∂y

∂xo

T ∂y

∂xo

dt)−1

∥

∥

∥

∥

∥

(9)

subject to the constraints

L =

∫ T

0

√

(ẋ2
1 + ẋ2

2) dt, (10)

ẋ = f(x,u); x(0) = xo, (11)

y = h(x). (12)

In this formulation, (10) establishes the length of the

path to be followed, while (11) and (12) correpond to ve-

hicle dynamics and measurement equations, respectively.

The interpretation of the optimality index is given in

terms of the following considerations. Consider the out-

put function y(t) = h(x(t)) as a function of the initial

conditions xo ∈ IR2 and of the input functions u ∈ U ,

with U a suitable functional space, and denote this as

y(xo,u, t). Let xo
o and x′

o denote two different initial

conditions, with ‖xo
o − x′

o‖ < ε, and write

y(x′

o,u, t) − y(xo
o,u, t) =

∂y

∂xo

∣

∣

∣

∣

xo=xo
o

(x′

o − xo
o) + O2(ε)

6



In order to distinguish between xo
o and x′

o based on

the difference in outputs, premultiply both sides by
∂y
∂xo

∣

∣

∣

T

xo=xo
o

(denoted ∂y

∂xo
for short) and integrate from

time 0 to T to get

∫ T

0

∂y

∂xo

T

(y(x′

o,u, t) − y(xo
o,u, t)) dt + O2(ε)

=

(

∫ T

0

(

∂y

∂xo

T ∂y

∂xo

)

dt

)

(x′

o − xo
o)

This equation has the form of a linear system b+δ = Ax,

where the known vector b comes from measurement out-

puts, the perturbation term δ comes from approxima-

tions errors (and possibly from measurement noise), and

matrix A depends on inputs. Invertibility of A is tanta-

mount to observability of the system. Also, in order to

have the least propagation of perturbations δ in the so-

lution x, it is well known (see e.g. Bicchi and Canepa 1)

that some norm of the inverse of A should be minimized.

Notice that the criterion in (9) does not reflect any

particular choice in the estimator or filter adopted, and

is therefore intrinsic to the reconstructibility of the state

from the given trajectory. A characterization of this cri-

terion in terms of the Fisher information matrix and the

Cramer–Rao bounds associated to the problem was pre-

sented by Piloni and Bicchi 6.

The solution of the above optimal control problem

might be difficult in general to obtain. In paticular, no-

tice that the cost functional is not in the standard form

J =
∫ T

0
L(x,u)dt, and does not enjoy the “localization”

property, i.e. additivity over time intervals.
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