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Abstract

In this paper, we consider the problem of maxi-
mizing the localization accuracy of a mobile vehicle,
based on triangulation measurements derived from op-
tical data. The problem is intrinsically nonlinear, as
the linear approximation of the system is not observ-
able. This implies that the choice of inputs (i.e., the
path followed) may a�ect the quality of observations
made, and ultimately the localization accuracy. We
consider the problem of �nding the most informative
exploratory path of given length for a rover (modeled
as a point in the plane) with optical triangulation in-
formation.

1 Introduction

One of the main technical di�culties in applying mo-
bile robots to unstructured environments is the prob-
lem of localization of the vehicle with respect to the
environment, and of constructing a map of the envi-
ronment itself. The problem is important for instance
for a rover exploring an unknown terrain, such as was
the case for the Sojourner explorer in the recent NASA
mission of Path�nder on Mars. On the other hand,
many everyday applications on Earth call for solutions
to the same problem. There is in fact a consolidated
trend in industrial AGV systems to move from tradi-
tional wire{guided systems to optically guided systems,
using laser or camera heads on the vehicle to locate it
on the factory oor. The advantage of the latter tech-
niques is apparent, in terms of drastically reducing the
cost and rigidity of �xed nets of active or passive mag-
netic devices placed under the oor, and allowing more
variate trajectories to be executed by the AGV's. On
the other hand, the technology of optical localization is
rather new, and several problems are still encountered,
related to both its technological aspects and to method-
ology to be used in �ltering and merging data from dif-
ferent sources. A good treatment for these problems is
that of Borenstein [3], and references therein.

In this paper, we deal with the problem of lo-
calization and map building for a mobile vehicle en-
dowed with odometric and optical sensors (laser or
camera heads). In section 2 we recast the problem

as one in nonlinear observability, and results obtained
from di�erential{geometric nonlinear system theory are
compared with those resulting from a linearized model,
showing how the problem is intrinsically nonlinear. In
section 3 we pose, and solve for a simpli�ed rover
model, the problem of �nding the most informative ex-
ploratory path of given length with optical triangula-
tion information.

2 Nonlinear Observability

We consider a system comprised of a mobile vehicle,
such as a robotic rover in a planetary exploration mis-
sion, which moves in an unknown environment with
the aim of localizing itself and the environment fea-
tures (in the rover case, e.g., rocks and geological for-
mations). The vehicle is endowed with a sensor head
such as a radial laser range�nder or movable camera,
whose data are assumed here to have been preprocessed
so as to yield a measurement of the azimuth angle in
the horizontal plane between the line joining the obsta-
cle features with the head position, and the direction of
movement of the vehicle (or any other direction �xed
w.r.t. the vehicle). An information on distance of the
target from the head is not considered to be available,
due to the fact that such measurement is hard to obtain
accurately from current laser or camera sensors.

Both the vehicle initial position and orientation, and
the obstacle positions, are unknown (or, more gener-
ally, known up to some a priori probability distribu-
tion). The task is to reconstruct such information from
angular measurements.

A model of the system that captures most salient
features of the problem, yet lends itself to simple ana-
lytical results, is used, which is based on the following
assumptions: the vehicle moves on a plane, and object
features are represented as points of the plane. Among
the features that the sensor head detects in the robot
environment, we will distinguish between those belong-
ing to objects with unknown positions (which we shall
call targets), and those belonging to objects whose ab-
solute position is known, which will be referred to as
markers.

The vehicle dynamics are supposed to be slow



enough to be neglected (dynamics do not add much
to the problem structure, while considerably increase
formal complexity). The mathematical model of the
systems is linear in control, and will be described as

_x = G(x)u
y = h(x)

(1)

where x is an n{dimensional state, u an m-dimensional
input, g(x) an n by m matrix whose columns are the
input vector �elds, and y is a p dimensional output
vector.

Generally speaking, the kinematics of the vehicle
might be nonholonomic: for instance, NASA's So-
journer could be modeled as a unicycle. In this case, the
vehicle's state can be described by the position of the
sensor head center, and by an orientation angle. The
position in the plane of the N targets, whose recos-
ntruction is part of the problem, can be considered as
additional 2N states (with trivial dynamics) (see �g.1).
Outputs in this examples would be the M +N angles

Figure 1: A unicycle in an unknown environment with
markers and targets.

formed by the lines through the sensor head and theM
markers andN targets, with the rovers fore axis. It can
be easily seen in this case that the linear approximation
of system (1) is not completely observable if there are
targets (N 6= 0) or if there are less than three markers
(M < 3): indeed, the drift term being null, only static
measurements are available to the linearized model. On
the other hand, it is intuitively clear that triangulation
may allow reconstruction of all the problem unknowns,
except at most for singular con�gurations. This can
be veri�ed by a nonlinear observability analysis, which
has been reported in detail in [2].

It is well known that in nonlinear systems, as op-
posed to linear ones, observability may depend on in-
puts. In our rover localization problem, this implies
that there may be trajectories that allow reconstruc-
tion, as well as others that do not. Two simple exam-
ples illustrating this fact are reported in �g.2 (a detailed
study is reported in [2])

Figure 2: A vehicle triangulating with two markers can-
not localize itself if and only if the trajectory aims at
the two markers; it cannot localize a target if it aims
at the target directly.

3 Optimal exploratory paths: Problem

Statement

In the previous section we have seen that, depending
on the trajectories followed by the rover, its localization
may become impossible. Naturally, it is to be expected
that not only the existence of unobservable states is
a�ected by trajectories, but also possible quantitative
measures of information collected along the trajectory.

One such quantitative measure can be de�ned as
follows. Consider the output function y(t) = h(x(t)) as
a function of the initial conditions xo and of the input
functions u 2 U , with U a suitable functional space,
and denote this as y(xo; u; t). Let xoo and x0o denote
two di�erent initial conditions, with kxoo�x0ok < �, and
write

y(x0o; u; t)� y(xoo; u; t) =
@y

@xo

����
xo=xoo

(x0o � xoo) +O2(�)

In order to distinguish between xoo and x0o based on
the di�erence in outputs, premultiply both sides by
@y
@xo

���T
xo=xoo

(denoted @y
@xo

for short) and integrate from

time 0 to T to getZ T

0

@y

@xo

T

(y(x0o; u; t)� y(xoo; u; t)) dt+O2(�)

=

 Z T

0

 
@y

@xo

T @y

@xo

!
dt

!
(x0o � x

o
o)

This equation has the form of a linear system b+ � =
Fx, where the known vector b comes frommeasurement
outputs, the perturbation term � comes from approxi-
mations errors (and possibly from measurement noise),
and matrix F depends on inputs. It can be shown that
invertibility of F is tantamount to observability of the
system if h(x) is analytic. Also, in order to have the
least propagation of perturbations � in the solution x,



it is well known (see e.g. Bicchi and Canepa [1]) that
some norm of the inverse of F should be minimized.
Notice that such criteria does not reect any partic-
ular choice in the estimator or �lter adopted in the
actual localization procedure, rather it is intrinsic to
the reconstructibility of the state from the given tra-
jectory. A characterization of the criterion in terms
of the Fisher information matrix and the Cramer{Rao
bounds associated to the problem was presented by Pi-
loni and Bicchi [7].

In the rest of this paper we will consider the problem
of maximizing a quantitative measure of observability
embodied in the minimum eigenvalue of F . However,
in applications such as the exploration of a planet's soil
by a robotic rover, the system is also confronted with
limitations in autonomy of motion, e.g. in the total
length of the path the vehicle can track in one day.

We can pose this problem as an optimal control
problem as follows: maximize the functional

J(u) = �min

 Z T

0

@y

@xo

T @y

@xo
dt)

!
(2)

subject to the constraints

L =

Z T

0

q
( _x21 + _x22) dt; (3)

_x = G(x)u; x(0) = xo; (4)

y = h(x): (5)

The solution of the above optimal control problem
might be di�cult in general to obtain. In the rest of
this paper, we specialize the vehicle kinematic model
to be that of an omnidirectional (holonomic) vehicle.
We will accordingly disregard the vehicle orientation
as a state, and simply assume G(x) in (1) to be the
identity matrix. This assumption is equivalent to ask-
ing that G(x) be invertible for all x (as it happens in
omnidirectional robots), and that a state feedbacl law
u = G�1(x)v is applied. This will allow us to use the
general results discussed in the next section to the par-
ticular type of measurement equations for the problem
at hand.

4 Optimal exploratory paths for at 2D

systems

Consider a two-dimensional problem with at con-
trollability distribution8<: _x1 = u1

_x2 = u2
y = h(x1; x2)

(6)

with h(x) analytic. Observing that for this system it
holds

@h
@x0

= @h
@x

@x
@x0

with @x
@x0

= I

and using subscript notation for partial derivatives, we
have

F =

Z T

0

�
h2x1 hx1 hx2

hx1 hx2 h2x2

�
dt 2 IR2�2: (7)

The smallest eigenvalue is evaluated as

�min = 1
2

R T
0 h2x1 + h2x2dt

� 1
2

r�R T
0
h2x1 � h2x2dt

�2
+ 4

�R T
0
hx1hx2dt

�2
:

(8)

Observe that, for
hx1
hx2

= C; (9)

with C constant, �min vanishes and, being F semi-
positive de�ned, the curve de�ned by (9) contains a
minimal extremal. Unfortunately, the functional (8)
does not enjoy the localization property (i.e., additiv-
ity over time, see [10]), so that standard results of the
calculus of variations and optimal control cannot be
applied directly.

To proceed in the analysis, it is expedient to recall
Rayleigh's lemma:

Lemma 1 Let A 2 IRn�n be symmetric, and �M , �m
denote its largest and smallest eigenvalues. Then �M ,

�m are respectively the maximum and the minimum

values of the bilinear form

� = xTAx x 2 IRn

on B(0; 1) 2 IRn.

Based on this, we can trasform the functional (8) as

�min = minkxk=1 x
T
R T
0

�
h2x1 hx1hx2

hx1hx2 h2x2

�
dt x =

= min�2[0::2�]
R T
0
(cos �hx1 + sin �hx2)

2dt:
(10)

For a given value �0, consider the functional

��0 =

Z T

0

(cos �0hx1 + sin �0hx2)
2dt: (11)

This functional (11) does have the localization property
and all classic results are applicable. In particular (11)
(and hence also (10)) depends on the parametrization
chosen for the path (see [10], [11]), or, in other terms,
on the velocity at which the path is followed. We will
consider henceforth constant velocity, and impose j _xj =
1 along all solutions.

This condition is equivalent (by integration) toZ T

0

q
_x1
2 + _x2

2dt = T: (12)



Let M , m be curves in C0[0; T ] which respec-
tively maximize and minimize �min, and let �m() =
arg min� �min(F ) so that

�min =

Z T

0

(cos �m()hx1 + sin �m()hx2)
2 dt: (13)

Since the extremum shall verify (12), M , m must
extremize the functional

�min =

Z T

0

(cos �m()hx1 + sin �m()hx2)
2 + �

q
_x21 + _x22dt

(14)
(see [10]). Observe that, since [cos(�); sin(�)]T in an
eigenvector of F which does not depend on t but only
on T , �m(), and hence also

f
def
= (cos �m()hx1 + sin �m()hx2)

2;

do not depend explicitly on t. Then writing Euler's
equations for the functional (14),

@

@x1
f � d

dt

@

@ _x1

q
_x21 + _x22 = 0 (15)

@

@x2
f � d

dt

@

@ _x2

q
_x21 + _x22 = 0; (16)

and observing that

d

dt

�
@

@ _x1

q
_x21 + _x22

�
=

d

dt

_x1p
_x21 + _x22

=
_x2 (� _x1 �x2 + �x1 x2)p

( _x21 + _x22)
3

(17)
d

dt

�
@

@ _x2

q
_x21 + _x22

�
=

d

dt

_x2p
_x21 + _x22

=
_x1 (� _x2 �x1 + �x2 x1)p

( _x21 + _x22)
3

(18)
by multiplying (17) by _x1, (18) by _x2, and adding up
we get

_x1 _x2 (� _x1 �x2 + �x1 x2)p
( _x21 + _x22)

3
+

_x2 _x1 (� _x2 �x1 + �x2 x1)p
( _x21 + _x22)

3
= 0:

Doing the same with (15), (16) we get

_x1

�
fx1 �

d

dt

�
@

@x1

q
_x21 + _x22

��
+

+ _x2

�
fx2 �

d

dt

�
@

@x2

q
_x21 + _x22

��
= fx1 _x1 � � _x1

d

dt

�
@

@x1

q
_x21 + _x22

�
+

+fx2 _x2 � � _x2
d

dt

�
@

@x2

q
_x21 + _x22

�
=

df

dt
= 0

and �nally
f(x1; x2) = C: (19)

Recall that C is a constant, hence (19) is a �rst in-
tegral of the functional (14). We have thus proved
that extremals of the variational problem lie in the one-
parameter (�) set

f(x1; x2) = C:

Finally, in order to determine C, note that the starting
point of the trajectory is known (x01; x

0
2) and hence

f(x1; x2) = f(x1; x2)j(x0
1
;x0

2
): (20)

Replacing f in (20) we have

(cos �m()hx1 + sin �m()hx2)
2 =

= (cos �m()hx1 j(x0
1
;x0

2
) + sin �m()hx2 j(x0

1
;x0

2
))
2 ;

which implies either

cos �m(hx1 +hx1 j(x0
1
;x0

2
)) + sin �m(hx2 +hx2 j(x0

1
;x0

2
)) = 0

(21)
or

cos �m(hx1�hx1 j(x0
1
;x0

2
))+sin �m(hx2�hx2 j(x0

1
;x0

2
)) = 0:

(22)
It is simple to verify that, if

hx1 ; hx1 j(x0
1
;x0

2
); hx2 ; hx2 j(x0

1
;x0

2
)

are not identically zero, (21) does not contain (x01; x
0
2),

and so, extremals must be found in the set described
(22). Observe that, setting

tan(�m) = �
hx1 j(x0

1
;x0

2
)

hx2 j(x0
1
;x0

2
)

in (22), the set (9) is obtained, i.e. for this particular
value of �m (22) contains the minimal extremal (along
which observability is lost). Finally observe that the
minimal trajectory does not depend on T .

5 Optimal exploratory paths with tri-

angulation

Consider again the omnidirectional vehicle model
_x = u, x 2 IR2, and consider its self-localization in
an environment containing two markers m1; m2 of co-
ordinates (0; p) and (0;�p), respectively. As an output
measurement, we consider the angle comprised between
the segments �m1x and �xm2 that can be easily mea-
sured by optical triangulation devices. More precisely,
the state and output equations are assumed to be8><>:

_x1 = u1
_x2 = u2

h =
x2
1
+x2

2
�p2

2px1

(23)



where, for simplicity's sake, we take as output function
the inverse of the cosine of the angle dm1xm2, which
is de�ned everywhere except for x1 = 0. Notice that
for all � with j�j � 1, it holds h�1(�) = C� with C�

the circle fx 2 IR2jx21 + x22 � p2 � 2p�x1 = 0g The
observability codistribution for this system is given by

O =

266666666664

1

2

x 21 � x 22 + p2

p x 21

x2

p x1
x 22 � p2

p x 31
� x2

p x 21

� x2

p x 21

1

x1 p
...

...

377777777775
(24)

and it has full rank on IR2 n fx = 0g for p 6= 0. Hence
the system (23) is locally observable.

Writing expression (22) for system (23), we obtain:

cos �m(
1

2

x 21 � x 22 + p2

p x 21
� 1

2

(x01)
2 � (x02)

2 + p2

p (x01)
2

)

+ sin �m(
x2

p x1
� x 02
p (x01)

) = 0:

Without loss of generality, let us set p = 1 and intro-
duce the notation

(hx1 j(x0
1
;x0

2
); hx2 j(x0

1
;x0

2
)) = (q1; q2):

Relation (22) becomes:

(cos(�m)� 2cos(�m)q1 � 2sin(�m)q2)x
2
1

+2sin(�m)x1x2 � cos(�m)x
2
2 + cos(�m) = 0

(25)

Dividing by sin(�m) 6= 0, we get

(�2�q1 + �� 2q2)x
2
1 + 2x1x2 � �x22 + �; (26)

where � = cotan (�m). Relation (9) becomes

�x21 + x22 � 1 + 2q1x
2
1 � 2x1x2 + 2q2x

2
1 = 0

which is a special case of (26). Finding maximal ex-
tremals is more complex. By the conics classi�cation
theorem (see [9]), writing (26) as

�
x1 x2 1

�24 2�q1 � �+ 2q2 �1 0
�1 � 0
0 0 ��

3524 x1
x2
1

35 = 0;

(27)
and setting

�1 =
1

2

�2 q2 + 2
p
q2 2 � 2 q1 + 1

2 q1 � 1
;

�2 =
1

2

�2 q2 � 2
p
q2 2 � 2 q1 + 1

2 q1 � 1
;

1

1.2

1.4
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x

Figure 3: The minimal extremal starting from (1; 1) is
a hyperbola. Moving along this path minimizes observ-
ability (actually, it makes the problem unobservable).

Figure 4: Conics starting from (1; 1) and for � > 1=2

we have an ellipse if � > �1 or � < �2; a hyperbola
for �2 < � < �1, and a pair of straight lines for � =
�1; �2. Because of the choice in (12), we need an arc
length (natural) parametrization of (27).

Let us start by observing that, by the change of co-
ordinates

R =

24 cos(�) � sin(�) 0
sin(�) cos(�) 0
0 0 1

35
where

tan(�) = � q1 + q2 +
p
�2 q1 2 + 2� q1 q2 + q2 2 + 1
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Figure 5: Conics starting from (1; 1) and for � < 1=2

conics are rewritten in principal axes as

=
�
x01 x02 1

� 24 A1 0 0
0 A2 0
0 0 ��

3524 x01
x02
1

35 = 0

(28)
with

A1 = �� q1 + �� q2 +
p
�2 q1 2 + 2� q1 q2 + q2 2 + 1

A2 = �� q1 + �� q2 �
p
�2 q1 2 + 2� q1 q2 + q2 2 + 1

Given an arc length parametrization for (28), by
applying R�1 an arc length parametrization for (27)
is obtained (arclength parametrizations are isometry-
invariant). Recall the de�nitions of the elliptic func-
tions of z 2 IR (parametrized by k 2 IR):

EllipticF (z; k) =

Z z

0

1p
1� k2t2

p
1� t2

dt (29)

(elliptic integrals of the �rst kind)

EllipticE(z; k) =

Z z

0

p
1� k2t2p
1� t2

dt (30)

(elliptic integrals of the second kind). A natural
parametrization for the ellipse (28) is given by8<: x0 =

q
�
A1

cos(El�1(s))

y0 =
q

�
A2

sin(El�1(s))
(31)

where

s = El(t) = �
r

�

A1
(EllipticE(cos t;

r
�

A2
� 1))

+

r
�

A1
(EllipticE(1;

r
�

A2
� 1))�

(for further details see [11]). By replacing�
x
y

�
=

�
cos(�) sin(�)
�sin(�) cos(�)

� �
x0

y0

�
in �m, and deriving with respect to � (notice that only
elliptic functions with their inverse appear in @�m=@�),
we obtain extremals corresponding to values of � that
solve @�m=@� = 0. This is a polynomial equation in
tan(�m) , which is divisible by

tan(�m) +
hx1 j(x0

1
;x0

2
)

hx2 j(x0
1
;x0

2
)

= 0

(indeed we know this to be a minimal extremal). Max-
imal extremals are then obtained by solving (numeri-
cally) the resulting simpli�ed polynomial equation.

The hyperbolic case is analogous, by substituting
relation (31) with�

x0 = (A2=A1)
p
(Il�1(s))2 + �2=A2

2

y0 = Il�1(s)
(32)

where

s = Il(t) =

EllipticE(
A2t

�
;

s
(�=A2)

2 + (�=A1)
2

(�=A2)2
)

(�=A2)
�

EllipticE(
A2

�
;

s
(�=A2)

2 + (�=A1)
2

(�=A2)2
)

(�=A2)

for a hyperbola in the form (28).
Some examples of optimal paths of di�erent length

are reported in �g.5. Notice that the optimal paths
di�er for di�erent lengths.

6 Conclusion

In this paper we have considered a basic problem be-
hind planning exploratory motions in an unknown en-
vironment, that is, the geometry of paths that achieve
maximum information for a given length traversed. Re-
sults show that optimal paths are arcs of conics: de-
pending on the starting point, they can be either hy-
perbola, ellipses, or straight lines. For a given starting
point, the optimal conic depends only on the assigned
length of the path to be traversed.



Figure 6: Optimal trajectories for three di�erent path
lengthsT1; T2; T3

Although our results only apply to a simple model
of omnidirectional vehicles and triangulation measure-
ments, we believe that it provides some insight in the
practically important problem of optimally planning
exploratory motions of given length for more general
systems, which problems will be the objective of fur-
ther studies.
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