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A Group-Theoretic Characterization of Quantized
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Abstract— In this paper we consider the reach-
ability problem for quantized control systems, i.e.
systems that take inputs from a finite set of sym-
bols. Previous work addressed this problem for lin-
ear systems and for some specific classes of nonlin-
ear driftless systems. In this paper we attack the
study of more general nonlinear systems. To do so
we find it useful to pose the problem in more ab-
stract terms, and make use of the wealth of tools
available in group theory, which enables us to pro-
ceed in our agenda of better understanding effects
of quantization of inputs on dynamic systems.

I. Introduction

Quantized control systems often represent a
proper model to deal with several real-world con-
trol systems, among which for instance are appli-
cations using switching actuators, or qualitative
measurements, or plants where the hardware im-
plementation of the controller loop only admits
information transfer with a finite bandwidth.

Several seminal contributions have appeared in
recent years on such problems, including those of
[4], [5], [2], [6]. In our previous work we have con-
sidered in some detail the analysis of the reachable
set and the synthesis of open-loop controls. A typ-
ical question arising under this regard is whether,
for a given set of input symbols, the recahble set
is everywhere dense or not, and if not, if there are
useful structires in the reachable set, such as e.g.
a lattice structure.

These questions, which have a direct bearing on
steering systems from one state to another and in-
directly also affect stabilization policies, have been
answered in [7], [1] for a particular class of sys-
tems, i.e. nonlinear driftless systems in chained
form. Although this class is rather general and in-
teresting in applications (most nonholonomic sys-
tems can be written in such form by a suitable
feedback and state diffeomorphism), in this pa-
per we aim at generalizing the approach. In par-
ticular, we will focus here on nonlinear driftless
systems which are not in chained form, and are

subject to quantized inputs. Two examples will
be considered for illustration: the case of a rolling
polyhedron (which is the quantized counterpart
of the plate-ball system, hence is not equivalent
to chained form), and the n-trailer vehicle system
(for which a feedback transformation to chained
form only exists if the control can take continuous
values). Our program is to embed these more gen-
eral problems into the general framework of group
actions so as to reduce the basic questions of den-
sity/discreteness of reachable sets to the study of
normal subgroups, for which a wealth of tools are
available form group theory.

The action of sequences of controls can be for-
malized, under suitable assumptions, as a group
action of a set of words. Invertibility of control
action is required. In general the set of controls
depend on the state and we first stratify the state
space by equivalence of control sets. Then we fo-
cus on the action of the group on a single equiva-
lence class considering words for which the equiv-
alence class is invariant. Most of literature in
group action theory is dedicated to the case of Lie
groups, but in our case the discreteness of control
sets force us to remain at level of general groups.
Orbits for the group action are precisely the reach-
able sets for the system. We introduce additional
assumptions to have homogeneity of the space of
orbits. The case of isometries is of particular in-
terest, since in this case we have that the reach-
able set is formed either by accumulation points
or by isolated ones. Then we introduce our main
tool: normal subgroups. We show that if isotropy
groups coincide along an orbit, then they are nor-
mal subgroups and, up to a quotient, we can re-
duce to a free action.

In general the action of a normal subgroup H
can be split in two parts: the first the action of the
subgroup H on its (sub)orbit and then the action
of the quotient over H over the set of H orbits.

This splitting can be viewed as a base-fiber split-
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ting of the state space and it is natural to describe
nonholonomic behavior. For the polyhedron ex-
ample (as well as for isometries groups over IR3 )
the set of translations (obtained by rotation along
edges) is a normal subgroup and the corresponding
fibration was used in [3] to detect density of reach-
able sets. Another important example is that of
chain systems in sampled integrated form, see [7],
[1]. Also in this case a complete classification of
topologies of reachable sets was obtained through
a natural base-fiber reduction.

II. Defintions and Fundamental
Assumptions

We begin with describing a quantized control
system in the language of the theory of groups.

A discrete time–invariant quantized control sys-
tem is a 4–tuple (Q,U ,A, Ω) with Q denoting the
configuration set, U a set of admissible input sym-
bols, A a state–transition map A : Q × U → Q.
Notice that in general U is to be considered as
state-dependent, hence A(q, u) is well defined if
u ∈ U is admissible for q ∈ Q. Moreover if u1 is
admissible for q and u2 is admissible for A(q, u1)
then we say that u1 and u2 are concatenable from
q and denote u1u2 the concatenation of u1 and
u2. By recursion we define an “admissible input
stream” from a point q ∈ U to be the concatena-
tion of concatenable symbols in U from q ∈ Q and
denote by Ωq the set of admissible input streams
from q and Ω = ∪q∈QΩq.

Next we will give more structure to our sets in
order to have a suitable definition for the transi-
tion map A.

Consider the multivalued function φ : Q → U
where φ(q) = Uq ⊂ U is the set of admissible in-
puts at q. Consider the equivalence relation on Q
given by q1 ∼ q2 iff φ(q1) = φ(q2), and denote Q/φ
the set of equivalence classes, [q] the equivalence
class of q.

H0 We assume that each equivalence
class is a connected submanifold of Q.
Thus we have that the map A is well defined on
each of the product [q1] × Uq1 :

A : [q1] × Uq1 → Q
where A(q2, u) is the state that the system reaches
from q2 ∈ [q1] under u ∈ Uq1 . Notice that, in
general A(q2, u) �∼ q2.

Consider the following conditions:
H1 ∀q1 ∼ q2 and ∀u ∈ Uq1(= Uq2) A(q1, u) ∼

A(q2, u).
Condition H1 is referred to as the compatibility

of the map A with respect to the equivalence rela-
tion ∼. Condition H1 implies that if q1 ∼ q2 then
Ωq1 = Ωq2 . Hence we can define the map, which,
by slight abuse of notation, is also denoted by A,

A : [q1] × Ωq1 → Q

where

A(q2, ω) = A(A(· · · A(q2, uN), · · · , u2), u1),

defines the state that the system reaches from q2 ∈
[q1] under ω = u1 · · ·uN ∈ Ωq2(= Ωq1). Moreover
A(q1, ω) ∼ A(q2, ω), that is the new map A is
compatible with the equivalence relation ∼.

Denote by ˜Ωq = {ω ∈ Ωq : A(q, ω) ∈ [q]} the
subset of input streams steering the system back
to the same equivalence class of the initial point.
By H1 ∀q1 ∼ q2

˜Ωq1 = ˜Ωq2 .
We assume also the following condition:
H2 ∀q ∈ Q, ˜Ωq is a group with the concate-

nation law, neutral element e, and inverse
ω̄ for all ω ∈ ˜Ωq. Moreover we assume that
A(q, e) = q.

Clearly, by H2, A(A(q, ω), ω̄) = A(q, ωω̄) =
A(q, e) = q.

Finally, for all equivalence classes, we have an
action of the group ˜Ωq on [q] with transition map
A.
The following condition

H3 for all pairs [q1], [q2] ∈ Q/φ there exists
ω ∈ Ωq1 such that A(·, ω) : [q1] → [q2] is an

homeomorphism and the map h : ˜Ωq1 → ˜Ωq2,

given by ω1 ∈ ˜Ωq1 �→ ω̄ω1ω = ω2 ∈ ˜Ωq2, is a
group isomorphism.
implies that the groups ˜Ωq are conjugate and the
map A(·, ω) is a h–homeomorphism.

This means that we can study the action of one
of the groups ˜Ωq on the equivalence class [q] be-
cause for the other equivalence classes we will have
the same behavior of the action.

From now on we will then assume conditions
H0,. . . ,H3 and restict ourselves to an action of a
group Ω on the connected manifold Q:

A : Q× Ω → Q.
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Observe that a : Ω → S from Ω in the set of
mappings QQ of Q into itself, where a(ω) = Aω

and Aω(q) = A(q, ω), is a group homomorphism.

We say that the action of A is effective if ker a =
{e}. If the action is effective we have that ∀ω ∈
Ω, ω �= e, there exists q ∈ Q, such that A(q, ω) �=
q. If ker a = N then we have that the action of
Ω/N on Q is effective hence, up to quotient, we
can assume that we have an effective action of Ω
on Q.

With this assumption we then have that, if
A(A(q, ω1), ω2) = q then ω1ω2 is identified with
the identity element e, hence ω1 is identified with
ω̄2.

Observe that, even if the action is effective we
can have fixed points, i.e. points q ∈ Q such that
A(q, ω) = q for all ω ∈ Ω.

We are interested in the analysis of the reach-
able set of a quantized control system. In our
framework it means that we shall analyse, from a
topological and measure point of view, the orbits
of a(Ω) from a point q ∈ Q that is Rq = {Aω(q) :
ω ∈ Ω}. The set of orbits is given by the quotient
Q/a(Ω).

We say that an action is transitive if ∀q1, q2 ∈ Q
there exists ω ∈ Ω such that q2 = A(q1, ω). Since
Ω is a discrete group we never have a transitive
action. Clearly the action is always transitive on
one orbit Rq and we say that Rq is a homogeneous
Ω–set.

Example: consider a polyhedron rolling on a
plane around the edges. The position of the polyhe-
dron is determined assigning the face that lyes on
the plane, the position and orientation of this face
with respect to a coordinate system on the plane.
Thus the state space is given by Q = F× IR2×S1,
where F = {F1, . . . , Fn} is the set of faces of the
polyhedron.

Fix q = (Fi, x̄, θ̄), then the possible controls are
determined by the edges of the face Fi. Indeed the
possible actions are rotations around one of such
edges until a face of the polyhedron adjacent to
Fi lyes on the plane. Therefore, if we denote by
{Fj : j ∈ Ji}, Ji ⊂ {1, . . . , n}, all adjacent faces
to Fi, we can describe the set of inputs admissible
at q as Uq = {Fj : j ∈ Ji}. Then Ωq is the set of
words Fi1 , . . . , Fim, m ∈ IN, such that i1 ∈ Ji and
ij ∈ Jij−1

, j = 2, . . . ,m.

Each equivalence class [q], q = (Fi, x̄, θ̄), is

given by {(Fi, x, θ) : x ∈ IR2, θ ∈ S1}.
Assumptions H0-H1 are obviously verified. No-

tice that ˜Ωq, q = (Fi, x̄, θ̄), is formed by the words
Fi1 , . . . , Fim ∈ Ωq such that im = i. Defining the
neutral element as the empty word, since every ac-
tion Fj, j ∈ Ji, is invertible, we get that H2 is also
verified.

Now given two equivalence classes [q1] =
(Fi1 , ·, ·) and [q2] = (Fi2 , ·, ·) let ω be any word
steering the polyhedron from [q1] to [q2]. Then the
map A(·, ω) is clearly an homeomorphism since it
is a translation on IR2 × S1. Moreover the cor-
responding map h is a group isomorphism so H3
holds true. We thus can fix some q and study the
action of the group Ω = ˜Ωq on Q = [q] 	 IR2×S1.
From previous works ([3]) we have that a(Ω) is
a subgroup of the isometries of IR2 (Aω(x̄, θ̄) �→
(x + R(θ̄)t, θ̄ + ψ) where ψ, t depend on ω and
R(θ̄) is the matrix of plane rotation of angle θ̄).
In general we have that Ω �= {e}, i.e. there
may exists an element ω ∈ Ω, ω �= e such that
∀q ∈ Q, Aω(q) = e. Therefore we restrict our-
selves to the action of Ω/ker(a) on Q.

We denote by Ωq, Ωq = {ω ∈ Ω : Aω(q) = q},
the isotropy group for q that is the subgroup of Ω
which fixes the point q. We say that the action is
free if Ωq = {e}, ∀q ∈ Q.

H4 ∀q1, q2 ∈ Q with q2 ∈ Rq1 Ωq2 = Ωq1.
Proposition 1: If H4 holds then for every q ∈ Q,

Ωq is a normal subgroup of Ω and Ω/Ωq acts freely
and transitively on the orbit Rq. We say that Rq

is a homogeneous principal Ω–set.
Proof: Fix q1 ∈ Q, ω̃ ∈ Ωq1 and ω ∈ Ω. We

need to show that ωω̃ω̄ ∈ Ωq1 . Let q2 = Aω(q1) ∈
Rq1 , then

Aωω̃ω̄(q2) =
Aωω̃ω̄Aω(q1) =
Aωω̃ω̄ω(q1) =
Aωω̃(q1) =
AωAω̃(q1) =
Aω(q1) = q2,

hence ωω̃ω̄ ∈ Ωq2 = Ωq1 .
Thus if H4 holds then it is not restrictive to

assume that Ωq = {e} hence that Rq is a homoge-
neous Ω–space.
If we have more than one orbit we would like the
structure of different orbits to be always the same,
from a qualitative point of view. This is guaran-
teed if we assume
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H5 For all q1, q2 ∈ Q there exists a home-
omorphism ϕ : Q → Q, ϕ(q1) = q2 such that
for every ω ∈ Ω we have ϕAω = Aωϕ.

If H5 holds we get that ϕ establishes a bijection
between Rq1 and Rq2 . Moreover the two reachable
sets have the same topological properties.

We assume a distance d to be defined on Q and
the following

H6 ∀ω ∈ Ω, Aω is an isometry.
This means that ∀q1, q2 ∈ Q, d(Aω(q1),Aω(q2)) =
d(q1, q2). Therefore the assumption H6 implies
(see Theorem 1 of [1]) that Rq is comprised ei-
ther only of accumulation points or only of isolated
points.

From now on we will assume H6, fix one point
q̄ ∈ Q and restrict ourselves to the analysis of the
orbit Rq̄.

Example(continue) In the polyhedron example
we have that the isotropy group Ωq = {e}, be-
cause a(Ω) are isometries (hence H6 holds true)
and if ω fix a point then it fixes all points, hence
ω ∈ ker(a). Moreover we consider tha action of
a(Ω)/ ker(a). Therefore assumption H4 is veri-
fied and the action of Ω/ ker(a) on the orbits Rq

is free and transitive.
We also have that the orbits are isometric. In-

deed consider q1, q2 any two points of Q and ϕ a
rotation of IR2×S1 around x1 followed by a trans-
lation of IR2 such that ϕ(q1) = q2. Then ϕ is an
isometry and satisfies H5. We thus can restrict
our study to a single orbit.

A simple example is given by the manipulation
of a cube with side of length �. Fix a face, say F1,
and consider the orbit through (x, θ) ∈ IR2 × S1.
Then we can reach all points with first component
on a square lattice of side � and orientation of type
θ + kπ/2.

III. Subgroup actions and base–fiber
decompositions

Let H ⊂ Ω be a subgroup. Then a(H) ⊂ a(Ω) is
a subgroup. Indeed if ω1, ω2 ∈ H then Aω1 ,Aω2 ∈
a(H) and Aω1Aω2 = Aω1ω2 ∈ a(H). Therefore we
could consider the orbit of q under the action of
H. Denoting RH

q the orbit under the action of the

elements of a subgroup H we clearly have RH
q ⊂

Rq. In particular we notice that Ωq, the isotropy
group of q is a subgroup of Ω and RΩq

q = {q}.
If H is a normal subgroup of Ω then, by defi-

nition, ∀ω ∈ Ω, ωHω̄ = H and Ω/H is a group.
As Rq is a homogeneous Ω–space so RH

q is a ho-
mogeneous H–space. This approach allow us to
first study the action of the normal subgroup H
on q and, second, the action of Ω/H on the set of
orbits {RH

q′ : q′ ∈ Rq}.
We observe that if q2 = Ah(q2)

Aω(q2) = Aωh(q1) = Ah′ω(q1)

where the last equation is obtained by applying
the definition of normal subgroup. Then

Aω(q2) = Ah′Aω(q1),

i.e. the transition from two different points of the
same H–orbit are mapped to the same H–orbit.
But, since h is in general different from h′, the
actions do not commute (this is important from
an algorithmic point of view). In order to have
commuting actions we could choose H = [Ω, Ω]
the subgroup of commutators.

Let us describe the link between normal sub-
groups and base–fiber decompositions.

Definition 1: Let H and G be two groups and
τ : G → Aut(H), τ(g) = τg a homomorphism of
G into the group of automorphism group of H, i.e.
τg : H → H. The set H×G with the composition:

(H × G) × (H × G) → (H × G)
((h , g), (h′ , g′)) �→ (hτg(h

′) , gg′)

is called the external semi–direct product of G by
H relative to τ and is denoted by H ×τ G.

Proposition 2: The external semi–direct prod-
uct H ×τ G is a group. The mappings i : H →
H ×τ G, i(h) = (h, e), p : H ×τ G → G, p(h, g) =
g, and s : G → H ×τ G, s(g) = (e, g) are group
homomorphism and s is a section, i.e. p ◦ s is the
identical mapping from G to G.

Proposition 3: If Ω = H ×τ K then we can de-
compose Rq into base RH

q and fiber RG
q .

The following proposition gives a conditions for
the existence of semi–direct decomposition.

Proposition 4: Let Ω be a group, H ⊂ Ω a nor-
mal subgroup and G ⊂ Ω a subgroup such that
H ∩ G = {e} and HG = {hg : h ∈ H, g ∈
G} = Ω. Let τ : G → Aut(H), τ(g) = τg with
τg(h) = ghḡ ∈ H. Then the map (h, g) �→ hg is
an isomomorphism of H ×τ G onto Ω.
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Example (continue). In the example of the
polyedron rolling on a plane, each element ω ∈ Ω
correponds to a rototranslation hence can be writ-
ten as a pair (t, θ) ∈ IR2×S1 with the composition
rule ω′ω = (t, θ)(t′, θ′) = (t + eiθt′, θ + θ′). Hence
there is an isomorphism of H×τ G onto Ω where H
is the subgroup of translations, a normal subgroup
of Ω and G ⊂ S1 is a group of rototranslation
that is finite in case of discrete reachable sets and
infinite otherwise.
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