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Abstract

In this paper we consider the reachability problem for
quantized centrol systems, i.e. systems that take in-
puts from a finite set of symbols. Previous work ad-
dressed this problem for linear systems and for some
specific classes of nonlinear driftless systems. In this
paper we attack the study of more general nonlinear
systems. To do so we find it useful to pose the problem
in more abstract terms, and make use of the wealth
of tools available in group theory, which enables us to
proceed in our agenda of better understanding effects
of quantization of inputs on dynamic systems.

1 Introduction

Quantized control systems often represent a proper
model to deal with several real-world control sys-
tems, among which for instance are applications us-
ing switching actuators, qualitative measurements, or
plants where the hardware implementation of the con-
troller loop only admits information transfer with a fi-
nite bandwidth.

Several seminal contributions have appeared in recent
years on such problems, including those of [3. 6, 7, 8].
In our previous work we have considered in some detail
the analysis of the reachable set and the synthesis of
open-loop controls. A typical question arising under
this regard is whether, for a given set of input symbols,
the recahble set is everywhere dense or not, and if not,
if there are useful structures in the reachable set, such
as e.g. a lattice structure.

These questions, which have a direct bearing on steer-
ing systems from one state to another and indirectly
also affect stabilization policies, have been answered in
{2, 9] for a particular class of systems, i.e. nonlinear
driftless systems in chained form. Although this class
is rather broad and interesting in applications (most
nonholonomic systems can be written in such form by
a suitable feedback and state diffeomorphism), in this
paper we aim at generalizing the approach. In par-
ticular, we will focus here on noulinear driftless sys-
tems which are not in chained form, and are subject
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to quantized inputs. Two examples will be considered
for illustration: the case of a rolling polyhedron (which
is the quantized counterpart of the plate-ball system,
hence is not equivalent to chained form}, and the n-
trailer vehicle system (for which a feedback transforma-
tion to chained form only exists if the control can take
continuous values). Qur program is to embed these
more general problems into the general framework of
group actions so as to reduce the basic questions of
density /discreteness of reachable sets to the study of
normal subgroups, for which a wealth of tools are avail-
able form group theory.

The action of sequences of controls can be formalized,
under suitable assumptions, as a group action of a set
of words. Invertibility of control action is required. In
general the set of controls depends on the state and
we first stratify the state space by equivalence of con-
trol sets. Then we focus on the action of the group on
a single equivalence class considering words for which
the equivalence class is invariant. Most of literature
in group action theory is dedicated to the case of Lie
groups, but in our case the discreteness of control sets
force us to remain at level of general groups. Orbits
for the group action are precisely the reachable sets for
the system. We introduce additional assumptions to
have homogeneity of the space of orbits and show that,
if isotropy groups coincide along an orbit, then, up to
a quotient, we can reduce to a free action.

Then we introduce our main tool: normal subgroups.
In general, given a normal subgroup H, the action can
be split in two parts: first the action of the subgroup
H on its (sub)orbit and then the action of the quotient
over H on the set of H orbits.

This splitting can be viewed as a base-fiber splitting
of the state space and it is natural to describe non-
holonomic behavior. For the polyhedron example (as
well as for isometry groups over IR™ ) the set of trans-
lations, obtained by rotation along edges, is a normal
subgroup and the corresponding fibration was used in
{4] to detect density of reachable sets. Another im-
portant example is that of chain systems in sambled
integrated form, see [2, 9]. Also in this case a com-
plete classification of topologies of reachable sets was
obtained through a natural base-fiber reduction.
Action of isometries is of particular interest, since in
this case we have that the reachable set is formed either
by accumulation peints or by isolated ones. However,
we possibly expect that only the action of the elements



of some subgroup H are isometries on the relative or-
bits and, in particular, that such action is linear. In
this case the work of [5] may help to understand the
structure of the reachable set. Moreover, for the nat-
ural action of the group modulo H over the space of
H orbits, we introduce the pseudometric that collapses
to zero distance all elements of each H orbit. This ap-
proach works even if the whole set of words fails to be
a group, as e.g. for the n—trailer system.

2 Definitions and Fundamental Assumptions

We begin with describing a quantized control system
in the language of the theory of groups. A discrete
time-invariant quantized control system is a 4-tuple
(@,U, A, 1} with @ denoting the configuration set, i/
a set of admissible input symbols, .4 a state-transition
map A : @ x U — Q. Notice that in general I is to
be considered as state-dependent, hence A(g, u) is well
defined if u € I is admissible for ¢ € Q. Moreover if
uy is admissible for ¢ and u» is admissible for A(q.u1)
then we say that u; and us are concatenable from ¢
and denote ujus the concatenation of u; and us. By
recursion, we define an “admissible input stream” from
a poiut ¢ € U to be the concatenation of concatenable
symbols in U from ¢ € Q, dencte by 1, the set of
admissible input streams from g and set @ = Uye Q'
Next we give more structure to our sets in order to have
a suitable representation for the transition map A.

* Consider the multivalued function ¢ : @ — {f where
¢{g) = U, C U is the set of admissible inputs at gq.
Consider the equivalence relation on & given by ¢1 ~ g2
iff ¢(q1) = ¢(gz), denote by Q/¢ the set of equivalence
classes and by [¢] the equivalence class of g. We assume
the following

(HO) Each equivalence class is a connected sub-
manifold of Q.

Thus we have that the map A is well defined on each
- of the product [@] x Uy,:

A ] x Uy, - @

where A(ga2,u) is the state that the system reaches
from g2 € [q1] under u € {4;,. Notice that, in general
A(ga,u) «¢ ga. Consider the following condition:

(H1) Vo ~ g2 and Vu € Uy (= Up), Alg,w) ~
A(QQ:“‘)'

Condition (H1) is referred to as the compatibility of
the map A with respect to the equivalence relation ~.
It implies the following:

!In general we may have © C Uge ol with strict inclusion.
For sake of simplicity we restrict ourselves to the case of equality.
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Proposition 1 Assume condition (H1) holds. Ifq ~
gz then Qy =, and we can define the map, which,
by slight abuse of notation, is also denoted by A, A :
[g:] x £y, = Q setting

A(qi’zw) = A(A("'A(q%ul)a' ":uN—l)a uN)a

the state that the system reaches from go € [g1] under
w = up--uny € g, (= Q). Moreover A(g,.w) ~
Alga,w), that is the new map A is compatible with the
equivalence relation ~.

Denote by ﬁq ={wey: Alg.w) € [g]} the subset
of input streams steering the system back to the same
equivalence class of the initial point. By (H1) Yq; ~ ¢
we have ﬁ:n = ﬁqz.

Notice that the set {2 with the operation of concate-
nation is a monoid with neutral element e, the empty
word. Let § be the set of mappings Q2 of Q inta
itself. Then, the map ¢ : 1 = &, with a{w) = A,
and A,(q) = Alg.w). is a monoid homomorphism if
we endow & with the composition operation and define
a(e) = A, = Id, where Id is the identity map of Q.
Let S C & be the subset of bijective, hence invertible,
maps of & into itself. Then § is a group for the compo-
sition operation. To endow {1, with a group structure
we assume the following condition:

(H2l Vg e Q, a(ﬁq) cSandvwe ﬁq there exists
@ € @, such that A; = (:4,)7".

Remark. Observe that discrete time-inveriant quan-
tized control systemns obtained by ezact sampling of
continuous—time driftless systems salisfy condition
{(H2), provided that the set of input symbols U is sym-
metric, f.e. uE U= —ueld

Consider the set_of relations ww = @w e, then
the quotient of Q,, over the corresponding equiva-
lence relation, is a group. For notational simplicity
we still denote by £, its quotient. We have that:
a: ﬁq 5 Sisa group homomorphism, this means
Auiwe = alwiws) = alws)alw) = Ay, Aw, . Moreover,
by (H2), A(A(QW)(A_J) = A((I w(D) = A(Q: e) =g. Fi-
nally, for all equivalence classes, we have au action of
the group g on [¢] with transition map A.

{H3) For all pairs {@}.[g2] € Q/¢ there exists
w € {1y, such that A(-,w) : [@1] = [g2] is an home-
omorphism and the map h: ﬁq] - ﬁqﬂ, given by
wy € ﬁq: - QLW = we € ﬁ", is a group isomor-
phism.

Condition (H3) implies that the groups ﬁq are conju-
gate and the map A{-,w) is a h~homeomorphism.
Remark. This means that we can study the action of
one of the groups ﬁq on the equivalence class [q] because
for the other equivalence classes we have the same be-
havior of the action.



Example 1. Consider a polyhedron rolling on a plane
around the edges. The configuration of the polyhedren
is determined assigning the face that lies on the plane,
the position, and orientation of this face with respect to
a coordinate system on the plane. Thus the state space
is given by @ = F x R? x 8!, where F = {F},..., F,}
is the set of faces of the polyhedron.

Fix q = (F, %,8), then the possible controls are deter-
mined by the edges of the face Fj. Indeed the possible
actions are rotations around one of such edges until

a face of the polyhedron adjacent to F; Iyes on the

plane. Therefore, if we denote by {Fj :
{1,...,
set of inputs admissible at ¢ as If
Then 1 is the set of words Fy -
that i; € J; and i; € J;,_
Each equivalence class [q], qg = (F I, 9), is given by
{{F,z,8) : z € R®.4 € §'}. Assumptions (HO)-
(H1) are obviously verified. Notice that ﬁq is formed
by the words Fy, --- Fi € {1, such that i,, = . Since
every action Fj, j € J;, is invertible, we get that (H2)
is also verified.

Now, given two equivalence classes [q;] = (F},,-,-) and
lg2] = (Fi;, . ), let w be any word steering the polyhe-
dron from [q1] to [g2]. Then the map A(-,w) is clearly
an homeomorphism of R? x S, Moreover the corre-
sponding map h is a group isomorphism so {H3) holds
true, We thus can fix some g and study -the action
of the group Nt = Q on @ = [q] ~ R? x §'. From
previous works ([4]} we have that a({1) is a subgroup
of the group of rigid motions of polygons on the plane
(Au(Z.0) = (& + R(G)}.0 + ) where ¢ € 5%, t € R,
depend on w and R(#) is the matrix of plane rotation
of angle 8).

j € Ji}: Ji C
n}, all adjacent faces to F,-, we can describe the
q = {F i€ Ji}
. m € N, such

From now on we then assume conditions
" (HO),...,(H3)} and restrict ourselves to an action of
a group 2 on the connected manifold Q-

A: @ x5 Q.

We are interested in the analysis of the reachable set of
a quantized contro! system. In our framework it means
that we analyse, from a topological and measure point
of view, the orbit of a(Q?) from a point ¢ € Q that is
Ry = {Au{g) : w € 01}, The set of orbits is given by
the quotient Q/a((2).

We say that an action is transitive if Vg, ¢ € Q there
exists w € 2 such that g = A(qy,w). Since 0 is a dis-
crete group we never have a transitive action. Clearly
the action is always transitive on one orbit R, and we
say that R, is a homogeneous {I-set.

By definition, the action of A is effective if kera = {e}.
If the action is effective we have that Vw € ,w # e,
there exists ¢ € Q, such that A(g,w) # ¢q. Hkera=N
then we have that the action of /N on @ is effective
hence, up to quotient, we can assume that we have an
effective action of Q on Q.
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With this assumption we then have that, if
A(A(g.w1),we) = ¢ for all g, then wyw, is identi-
fied with the identity element e, hence w; is identi-
fied with @s. Observe that, even if the action is effec-
tive we can have fixed points, i.e. points ¢ € @ such
that A(¢,w) = g for all w € Q. We denote by ¥,
WV ={welt: A.lg) = q}, the isotropy group for ¢,
that is the subgroup of Q! which fixes the point . We
say that the action is free if Q¢ = {e}, Vg€ Q.

(H4) Vq,.q92 € Q with ¢z € R, we have (% =0,

Proposition 2 If (H4) holds then for every q € Q,
¥ is @ normal subgroup of Q aend Q/QY acts freely
and transitively on the orbit R,. We say that R, is e
homogeneous principal /{1 —set.

Proof: Fixgq € @, w e 19 and w e . We need to
show that wiw € Q7. Let gz = Az(q1) € Ry, , then
Auwia(g2) = Avao (Ao(q)) =
Azwza(t) = Avalq) =
Ao (As()) = Aalqn) = o,

henece wa@ € 192 = QN n

Thus if (H4) holds, then, up to quotient, it is not re-
strictive to assume that Q1 = {e}, hence that R, is
a homogeneous principal Q-set. If we have more than
one orbit we would like the structuré of different orbits
to be always the same, from a qualitative point of view.
This is guaranteed if we assumne

(H5) For all q;,q: € Q there exists a homeomor-
phism ¢ : Q@ = 9, v(g1) = g2 such that for every
w € ! we have p A, = A, p.

If (H5) holds we get that ¢ establishes a bijection be-
tween R,, and R,,. Moreover the two reachable sets
have the same topological properties.

From now on we also assume (Hd4)-{H5), fix one point
¢ € @ and restrict ourselves to the analysis of the orbit
Rq«

Example 1.(continued) In the polyhedron example we
have that the isotropy group N1¢ = ker(a), because if w
fixes a point then it fixes all points, hence w € ker(a).
Therefore assumption (H4) is verified. We consider the
action of {}/ker{a) on the orbits Ry, that is free and
transitive. We also have that the orbits are isometric.
Indeed consider q;,4, any two points of @ and ¢ a
rotation of the §' component followed by a translation
of the R? component such that ©(g1) = g2. Then g is
an isometry and satisfies (H5). We thus can restrict
our study to a single orbit.

A simple example is given by the manipulation of a
cube with side of length £. Fix a face, say Fi, and
consider the orbit through (z,6) € R* x S'. Then we



can reach all points with first component on a square
lattice of side £ and orientation of type 8 + kw /2.

3 Subgroup actions and base—fiber
decompositions

Let H C Q) be a subgroup. Since a i$ a group homo-
morphism, then a{H) C a(Q1} is a subgroup {wi,ws €
H= Ay, Ay, € a(H) and A, Auy = Augw, € alH)).
Therefore, we can consider the orbit of ¢ under the
action of H and, denoting it by ’Rf , we clearly have
Rf C Rq. In particular we notice that 29, the isotropy
group of g, is a subgroup of 2 and R = {q} (this
holds true even if Q7 # {e}).

If H is a normal subgroup of © then, by definition,
Vw € 0, wHO = H and /H is a group. As R, is
a homogeneous principal (-set, ’R,f is also a homo-
geneous principal H-set. This approach allowes us to
first study the action of the normal subgroup H on g
and, second, the action of Q/H on the set of orbits
{R;{ 1q' € Ry}

We observe that if g2 = Ax{q:), with h € H, then, by
definition of normal subgroup, there exists h' € H such
that

A‘.-(Qz) = -Ahw ('I1) = -Au)h' (QI)

Then _
Aulg2) = Aprdu{g).

ie. two different points of the same H-orbit are
mapped by any element of 2 to the same H-orbit. But,
since A is in general different from A’, the operation of
moving along the H-orbit does not conunute with that
of moving through different H-orbits, i.e. the points
reached permuting the order of the two operations are
different. This issue plays an important role in con-
structing algorithms for motion planning. In order to
have commuting actions we may choose H to be the
derived subgroup of 0, ie. the group generated by
{wrwadn@s : wi,we € 0} and denoted [©2,0)]. Indeed
for [(2, Q] the following properties hold:

1. The derived subgroup of 2, [, 0], is a characteristic
subgroup of {1 (i.e. it is stable for all automorphism of
§1). In particular it is a normal subgroup of .

2. The quotient group /{02, 7] is an abelian group.
3. If H ¢ 2 is a subgroup then the following are equiv-
alent:

i) H 2 [0,9)

ii) H is normal subgroup of N and Q}/H is commuta-
tive;

4. If (¥ is generated by a set B of generators then [2, 0]
is the normal subgroup generated by the set of commu-
tators of elements of B.

All these properties have been extensively used to treat
the case of quantized chain form systems in [2]. It helps,
for the analysis of reachable sets and planning, having
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a set of generators. From property 4. above, we get
the following:

Corollary 1 Let Q be a ygroup generated by a set B.
Then [Q. 1] is generated by the set of commutaters of
elements of B and if w: (t = 2/[Q, Q] is the canonical
projection, then =(B) generates 0/, Q).

Let us now describe the link between normal subgroups
and base-fiber decompositions. First we introduce
some definitions and known results.

Definition 1 Let H and G be two groups and r : G —
Aut{H)., 1(g) = 74, a homemorphism of G into the
group of uutomorphisms of H, ie. 7, : H - H. The
set H x G with the composition:

(HxGYx (HxG) —
((h. 9), (W'.g"))

is called the ecternal semi-direct product of G by H
relative to T and is denoted by H %, G.

(H x G)
= (AT, (7). gg")

Proposition 8 The ezternal semi-direct product H x -
G is a group. The mappingsi: H - H x,. G, i[h) =
(h,e)y p: Hx; G = G, plh.g) = g, and s : G —
H % G, s(g) = (e.g) are group homomorphisms and
s 15 a section, i.e. po s is the identity map from G to

G.

The following proposition gives a condition for the ex-
istence of a semi—direct decomposition.

Proposition 4 Let 1 be a group, H C £ a normal
subgroup and G C Q a subgroup such that HNG = {¢}
and HG ={hg: he H. ge G} =Q. Let7:G =
Aut(H), rv(g) = 7, with 7,(h) = gh§ € H. Then the
map (h.g) — hg is an isomomorphism of H %, G onto
Q.

In next proposition we show that a decomposition of {}
as a semidirect product induces a decomposition of the
same type of the orbit R, in base and fiber.

Proposition 5 If 2 = H x; G satisfes the assump-
tions of Proposition 4 then we can decompose Ry into
fiber RE and base RS in the following sense. The map
A 1 2 = H x; G = Ry, defined by Ay(w) = A.(g),
is a bijection, satisfies Ag((h.9)) = Agng,e)Afe.q) (),
A {(H.e)) = ’Rf and A ((e,G)) = ’RqG.

Proof: Since the action of 2 is [ree, A, is a bijection.
Now, let w=(h,g) € H x. G then

(e:g){Tﬁh:e) = (eTyrﬁh: g) = (ht.g)a



hence

Ag(w) = Aulg) = An,g) (@) = Appr ey Ajegr ()

where i = 1zl = ghg € H. since H is normal in (2.
]

An exatuple of semi-direct decomposition is that of the
group of isometries of the euclidean space R"®, which
decomposes as a semi-direct product of the group of
parallel translations GA(n) and the orthogonal group
O(n). In this case g(t) = Rt € GA(n) forall R € O(n)
and t € GA(n), and the product in GA(n) %X, O{n) is
given by the law: (¢, RB1)(t2, Ra) = (f1 + Rats, Ri Ro).
Recall that our concern is in quantized systems, hence
we have to deal with subgroups, eg. 2 C GA{n) %,
O(n), and it is of interest to understand if it is possi-
ble to express a subgroup of a semidirect product as a
semidirect product itself.

Proposition 6 Let 2 be the external semi-direct prod-
uct of G by H relative to 7, H' C H, G' C G and
1o(H'Y C H' for all ¢ € G' Then the external semi-
direct product of G' by H' relative to 7, H' x. G is a
subgroup of 1.

Proof: We denote ' = H' x, ¢'. Clearly
any element of (h.g) € V' also belong to {t. Next
we see that ' is a subgroup of . The neutral
element (e,e) € . Moreover, for each (h,g) €
Q. (r5h,5) belongs to ¥ (r;h € H') and is such
that (r;h.5)(h.g) = (m3h73h.39) = (e.e). Finally
(hll:gl)(hmgz) = (hlfglhhgl?QZ) € f¥, since To he €
H'. ]

The converse is false. Think, for example, to the
subgroup {(z,z) : z € IR} of the direct product
(IR.+) x (IR, +). However we have the following

Proposition 7 Let Q be the external semi—direct prod-
uct of G by H relative to 7, and ¥ C Q a subgroup.
Let H" = i(H)n Y, H' =i~} (H"), G" = s{G)n ¢V,
G = p(G"), then H' is a subgroup of H, G’ is o
subgroup of G, T,(H') € H' for all g &€ G', and
o H x.G".

Proof: If hi,ha € H', then (hy,e)(hs,e) =
(R1h2.e) € ', hence hyhy € H'. Take h € H' and
let (hy.g:) € §¥ be such that (e.e) = (h,e){h1,q1) =
(hrehi, 1} = (hhi,91), hence s = eand hy € H' is
an inverse of &. Thus H' is a subgroup of H, simi-
larly ¥ is a subgroup of G and H' x,. G' ¢ (V. Now,
for any hl,flz € H’, gi,q2 € GI, (h.l,gl)(’l-z,gg) €
' since (hy,g1).(he.g2) € €. On the other hand
(he,g)(ha. ) = (Marg hee) € ' M i(H)., Hence
Ty e € H'. ™
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Having a set of generators of the acting group is a fun-
damental tool in the analysis of reachable sets for quan-
tized systems. In particular, if the group is expressed
as a semidirect product of G by H relative to 7, it is of
help to individuate the generators of G and H. There-
fore, assuming that () is freely generated by a subset B
of (1, we want to find sets of generators By and Bg for
H and G respectively.

Proposition 8 Let } = H x,. G, B C § a-set of gen-
erators, define

Ba={g: 3h € Hsi.(h,g) € B}
and
By = {rgng: P gi € Bg, 3g € Gsit.(h.g) € B}

Then By and B generate H and G respectively.

Proof: Clearly any ¢lement of GG is generated by a
product of elements of Bg. Moreover the group gener-
ated by By is contained in H. It remains to show that
H is generated by By. Let h be an element of H, then
we can write

(h= e) = (h-mgn) 1en (hlagl)

for some n € N and {(h;,g:) € Bfori=1,...,n. We
have (h,e) = (I, g'} with

B =ho(tg hn1 ) (T, Tgu_yPin—2) .. (Tgn -« - TgaP2)
Q'] = fnln-1.. -.gle

hence ¢' = gngn—1...00 = e and

1 ‘
h=h, H Tgu - Tgepr Pie

t=n—1

Now, 7o, .+ Tgiy1 Bi € By, te. b € H can be written as
product of elements of By. =

If 2 is finitely generated (i.e. B finite) then also Bg
and By are finite and & and H are finitely generated.

Example 1. (continued) In the example of the polye-
dron rolling on a plane, each element w € ¥ can be
identified with a pair (¢,%) € R® x §' and ww' =
(£ (' A") = (2 + R, ¢ + ¢'). Hence there is an
isomorphism of H x; G onto 2, where H is the nommal
subgroup of elements that act only on the IR? compé-
nent, with a translation that depends on the 8! compo-
nent, and & is the subgroup of elements that act only
on the §' component. In [1] a finite set of generators of
1 is found, consequentely a finite set of generators for
H and & are obtained as in Proposition 8, a decompo-
sition in base—fiber is operated, permitting a complete
characterization of the structure of reachable sets.



4 Isometries and the n—trailer

If a distance d is defined on @ we may assume
(H6) Vw € 1, A, is an isometry.

This means that Ygi,¢2 € Q, d{.(g1), Au(g2) =
d(a1,q2). Therefore the assumption (H6) implies (see
Theorem 1 of [2]) that R, is comprised either only of
accumulation points or only of isolated points.

In general this assumption is quite restrictive, how-
ever, in case of base—fiber decomposition, we may have
isometries in H (G} at least on the fiber RY (base RY),
as shown in next examples.

Example 1. (continued) Introduce on @ = R? x 5!
the metric product of the Euclidean metric on 2 and
the Riemannian metric on S! (inherited from IR?),
that is d((z1,61), (z2.62)) = |71 — 22| + [|61 — |
where ||@, — 2] = min{]#; — 82 (mod 2x)],|0: — &y

(mod 2m)t}. With this metric G C Iso(Q. d), the group
of isometries, while the elements of H are not isome-
tries. Indeed d(Ag,e)(21.61): Agr,e)(22.82)) = [z1 —
zz + (R(61) — R(62))t] + ||&h — 624]. However, they are
isometries on the set of points having the same 5! com-
ponent, i.e. H C Iso('Rf, d), for every g € Q.

Example 2. Sampled systems in chain form are
treated in [2]. For those systems @ = R”®, H is the
normal subgroup of actions that do not move the first
two components and G is the subgroup that moves only
the first two components. Here Q = I xG (direct prod-
uct) are not isometries of R" for the Euclidean metric
d, but both H and G are subsets of Iso{@, d).

Tt may happen that G are isometries only on the base,
that is G C Iso(Q, dg), where dg is the pseudometric
that measures the distance only on the base ’Rf. This
pseudometric is of particular interest in the case where
the group G is not explicitely identified. but H is. Then
we can consider the action of 2/H on the set of H
orbits, which may consist of isometries for dg. Even
more, this structure can be used also when (I¥2) does
not hold, as shown in next example.

Example 3. Consider the n—trailer system, whose
configuration space is given by (r,¥.6,%1,....9n).
where z = (z,y,8) € 2 = R? x S? gives the posi-
. tion and orientation of the leading car and ¢; € S' is
the relative angle formed by the (i — 1)-th and the i-th
trailers (the car is considered as 0 trailer). In case of
nn = 1, with constant speed of the car, the equations

are given by

T = cos(6)

y = sin(f)

é = U3

¢ = =sin(p) — uz(l + cos(y)).
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We focus on its quantized version obtained by sam-
pling and taking a finite number of control inputs. In
this case, assumption (H2) does not hold and the set
Q is only a monoid. not a group. However it is pos-
sible to identify the submonoid H of actions that do
not move Z. Let d be the pseudometric which mea-
sure the distance on Z only, then the quotient @/d,
obtained identifying elements with zero d distance, is
isometric to Z. Identifying the elements of H with the
empty word we obtain a set 2 that act as a group on
Z. This action is the same of the Dubins’ car system
and can be proved to be equivalent to that of rolling
polyhedra extensively lustrated in Example 1. The
natural decomposition of ) has been explained above.
It remains to study the action of H. For the variable
1 = tan(£), this action can be written in the form
¥+ = Ay + (1 — A), where ) depends on the element of
H. Linear systems of this kind were studied in [5] and
we can use the same tools to understand the structure
of the reachable set. The latter happens to be dense
unless some resonance conditions are verified.
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