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Abstract— In this paper, we describe the realization and
control of robotic end—effectors that are designed to achieve
high operational versatility with limited constructive com-
plexity. The design of such end—effectors, which can be re-
garded either as low—complexity robot hands or as highly
versatile robot grippers, is based on the intentional exploita-
tion of nonholonomic effects that occur in rolling. While the
potential usefulness of manipulation by rolling has been the-
oretically established in the literature, several problems in
the practical implementation of the concept remained open.
In particular, manipulation of parts of complex, and a priori
unknown shape, is considered in this paper. Experimental
low-complexity grippers that realize dexterous manipulation
by rolling are also described.

I. INTRODUCTION

The development of mechanical hands for grasping and
fine manipulation of objects has been an important part
of robotics research since its beginnings. Comparison of
the amazing dexterity of the human hand with the ex-
tremely elementary functions performed by industrial grip-
pers, compelled many robotics researchers to try and bring
some of the versatility of the anthropomorphic model in
robotic devices. From the relatively large effort spent by
the research community towards this goal, several robot
hands sprung out in laboratories all over the world ([1]
contains a recent survey).

Multifingered, “dextrous” robot hands often featured
very advanced mechanical design, sensing and actuating
systems, and also proposed interesting analysis and con-
trol problems, concerning e.g. the distribution of control
action among several fingers subject to complex nonlinear
bounds such as those due to friction. Notwithstanding the
fact that hands designed in that phase of research were of-
ten superb engineering projects, the community had to face
a very poor penetration to the factory floor, or to any other
scale application. Among the various reasons for this, there
is undoubtedly the fact that dextrous robot hands were too
mechanically complex to be industrially viable in terms of
cost, weight, and reliability.

Reacting to this observation, several researchers started
to reconsider the problem of obtaining good grasping and
manipulation performance by using mechanically simpler
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devices. This approach can be seen as an embodiment of a
more general, “minimalist” attitude at robotics design (see
e.g. works reported in [2]). It often turns out that this
is indeed possible, provided that more sophisticated anal-
ysis, programming and control tools are employed. The
challenge is to make available theoretical tools which allow
to reduce the hardware cost at a - comparatively little -
incremental cost of basic research.

In this paper, we will focus on the achievement of dexter-
ity with simplified hardware. By dexterity we mean here
(in a somewhat restrictive sense) the ability of a hand to
relocate and reorient an object being manipulated among
its fingers, without loosing the grasp on it. Salisbury ([3])
observed that a hand that manipulates an object by means
of rigid, hard—finger, non—rolling and non—sliding contacts,
needs at least three fingers, and three joints per finger,
to achieve dexterity. As a consequence, most dexterous
robotic hands use at least nine independent joints, which
fact entails complex, costly and hard-to-maintain appara-
tuses for actuation and sensing.

If the non-rolling assumption is lifted, however, the sit-
uation changes dramatically, as nonholonomy enters the
picture. The analysis of manipulation in the presence of
rolling has been pioniereed by Montana [4] and Cai and
Roth [5]. Subsequently, Cole, Hauser, and Sastry [6] con-
sidered the kinematics and control of a multifingered hand
with rolling contacts. Li and Canny [7] used nonlinear con-
trollability tools to show that a sphere rolling on a plane, or
on another sphere, can be relocated and reoriented at will
by using only rolling motions. A first prototype of a hand
implementing purposefully rolling manipulation was pre-
sented in [8] (see fig.8), along with a numeric algorithm for
planning. Controllability of rolling for smooth, strictly con-
vex, axial-symmetric surfaces rolling on planes was shown
in [9]. A general result was presented in [10], showing the
generic controllability of rolling pairs (i.e., that any two
surfaces, with the only exception of surfaces that are mir-
ror images of each other, can be arbitrarily reoriented and
relocated by rolling). While the above results were limited
to rolling surfaces with smooth surface, the case where the
object to be manipulated had a polyhedral description was
considered in ([11],[12]).

Such theoretical results proved in principle the feasibil-
ity of exploiting rolling manipulation to enhance dexterity
and to reduce the complexity, cost, weight, and unrelia-
bility of the hardware used in robotic hands. However, in
order for such promises of the nonholonomy-on-purpose ap-
proach to be fulfilled in practice, much work remains to be
done. In particular, there is a need for efficient and robust
algorithms and techniques to deal with manipulation of ob-
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jects that realistically can be encountered in applications,
and for practical devices adding to the normal functions of
a robot gripper new manipulative features.

In this paper we attack some of the most important open
problems in the manipulation by rolling of objects, from
both a theoretical and practical point of view. After some
background review (II), in section III, we consider manip-
ulating objects for a which a geometric description is not
available a priori, and provide an algorithm for reconstruct-
ing their shape based on sensing information collected dur-
ing manipulation, taking into account the smoothness re-
quirements deriving from subsequent application of recon-
structed models to planning. In section IV, we consider
planning rolling manipulation of objects of general shape.
A novel algorithm is proposed that improves upon existing
techniques in that: i) it is finitely computable and pre-
dictable (an upper bound on the computations necessary
to reach a given goal within a tolerance can be given), and
ii) it possesses a topological property which enables ob-
stacles and workspace limitations to be dealt with in an
effective way. In V), we present the design of a novel dex-
terous gripper (DxGrip—II) that is intended to be a practi-
cal substitution of existing end—effectors at least in light—
weight robotic applications. Experimental results are re-
ported that confirm the validity of proposed technique in
practical applications.

II. BACKGROUND

For the reader’s convenience, we report here some pre-
liminaries that help in fixing the notation and resume the
background. For more details, see e.g. [13]. We will
consider both the part to be manipulated (henceforth re-
ferred to as “object”) and the manipulating “finger” to
be simple regular surfaces, denoted as ¥, and Xy, respec-
tively. Let the two surfaces be described, in a neighbor-
hood of the contact point, by orthogonal parameteriza-
tions (f;,U;); fi : Ui € R? = %; ¢ R®, (i = f,0), and
let u = (u1,us) € Uy, x = (x1,22) € Uy denote the local
coordinates. A Gauss (normal) map n; : ¥; — S? C R?,
= ) s
useful to define a normalized Gauss frame with unit vectors

(i /Nfiall), (fiz/ N fi2ll)s (i)}

The kinematic equations of motion for rolling bodies de-
scribe the evolution of the (local) coordinates of the contact
point on the surfaces, u and z, along with the (holonomy)
angle 1) between the two Gauss frames, as they change ac-
cording to the rigid relative motion of the finger and the
object described by the relative velocity v and angular ve-
locity w = (wWa, wy,w:).

Accordingly, the (local) state for our problem is com-
prised of the coordinates of the contact point on the object
(u € IR?) and on the finger (z € IR?), along with the
holonomy angle ¢ € S'. A distance on the resulting state
manifold M C IR? xIR? x S' can be defined by the product
metric induced by the Riemannian distance on the object
and finger surfaces as submanifolds of IR* and by the Rie-
mannian distance on S' as a submanifold of IR? (namely,
the distance in radians).

can be written for both surfaces as n;

Kinematics of rolling can be derived from either the clas-
sical differential geometric viewpoint (using the first and
second fundamental forms for a surface X, denoted as 7
and 77, respectively, and Christoffel symbols of the first
and second kind, [ij, k] and Ffj); or using Cartan’s def-
initions of metric form M, curvature form K, and tor-
sion form T. The relationship between the two sets of
forms is given by M = VI, K = M-TZZ M-, and
TM = MM ' [T}, T3] (see e.g. [14], [10]. Observe
that, at regular points for the parameterization, the co-
efficients of the metric and of the torsion tensors of the
object surface are uniformly bounded and bounded away
from zero.

According to the derivation of Montana [4], in the pres-
ence of friction (i.e., assuming a soft—finger contact model)
one has v =0, w, = 0, and

& = M;'K'w (1)
w = M;'RyK 'w
Y = TyMypi+ T, M,
where K, = K¢ + Ry K, Ry is the relative curvature form,
| cosyp  —siny | 4
Ry = { —sinty —costy } =Ry
and
w [ Yy } )
W

When the finger’s surface is a plane (such as is the case in
the grippers considered in this paper), one has immediately
Ky = 0 and Ty = 0, while the metric tensor My is the
identity matrix. In this case, rolling equations reduce to

T = W
7.% = Mo_lRwZ) (2)
v = ToRyw,

with @ </ Ry K, 'Ryw, and hence have a strictly trian-
gular structure, i.e. it is possible to solve the ordinary
differential equation (2) by successive applications of time
integrals (quadratures).

III. EXPLORATION AND RECONSTRUCTION OF
UNKNOWN OBJECTS

As already mentioned, parts to be manipulated are some-
times not known a priori to the robot, and information on
their shape may need to be gathered before manipulation
can be planned and executed. In this section we describe
the means by which it is possible to elicit shape informa-
tion from rolling, with particular reference to the case of
regular surfaces.

A procedure to explore the surface of unknown objects
can be simply devised as follows:

i) The hand (with fingers open) is put around the object
to be explored, and then closed in guarded mode with a
contact force threshold;
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Fig. 1. Spherical coordinates on an object under roling manipulation
for exploration.

ii) While actuators commanding the distance between the
fingers regulate a suitable grasping force to avoid slippage,
the actuators that command relative rotations and transla-
tions of the fingers follow random trajectories causing the
object to roll between the fingers;

iii) the position of the contact point on the surface of the
upper and lower fingers, as well as the position and velocity
of the gripper joints, are measured during exploration; this
information is used to calculate the position and velocity
of the contact points on the object surface.

To reconstruct an approximation of the surface of the
object, it is necessary to evaluate the instantaneous posi-
tion of the contact points with respect to a cartesian frame
fixed with the object. Let the origin of this frame be de-
noted by o, and let three unit vectors parallel to the x, y,
and z axes of the body frame be denoted by 4, 7, and k, re-
spectively (see fig.1). Let the object surface be described in
spherical coordinates, i.e., the position of a generic point
(except the north and south poles) of the surface in the
body—fixed frame is given in terms of azimuth u € [—m, )
and elevation v € (—m/2,7/2) angles as

x = p(u,v) cosvcosu
y = p(u,v) cosvsinu (3)
z = p(u,v)sinv

where p(u,v) is a continuous function of the azimuth and
elevation u,v. Notice that spherical coordinates are conve-
nient for several reasons, among which is the fact that they
provide an orthogonal parameterization of all surfaces of
revolution (i.e., surfaces with an axis of symmetry), except

. . d
at their poles. For surfaces of revolution, p, e W =0.

The position of the contact points on the upper and lower
finger (denoted by ¢; and c¢a, respectively) being known
from tactile sensing, their velocities ¢; and ¢» with respect

to a fixed wrist frame can be easily calculated by using
the finger Jacobian matrix and measures of finger joint ve-
locities. From data on the position and velocity of two
points on the rigid object being manipulated, and using
assumptions on friction at the contacts, one easily obtains
the instantaneous angular velocity w of the rolling object
in the wrist frame.

The object motion is described by the following differen-
tial equations:

0o =

R =

éL+wx(0—cp)
wX R

Integrating these equations during the exploration time,
the instantaneous position and orientation of the body can
be obtained. From geometric considerations (see fig.1) we
obtain at each time ¢ the desired information on the co-
ordinates of two points of the object surface from tactile
sensor measurements ¢ (¢) and ¢ (¢) from (3) by setting for
i=1,2

— o)L
vi(t) = arcsin %;
Pi
ui(t) = atan2 ((c¢} — o)Tj, (¢ - o)Tz') :
pit) = |lei—oll,

where
¢, = ¢; — pisinv;k.

The problem of reconstructing a surface from knowledge
of a number of its points is an important issue common
to several fields of science and engineering. In robotics,
the problem has been studied extensively in relation with
processing data from cameras, range finders, and/or tac-
tile sensors. Part of the literature is concerned with the
“object recognition”, or model matching problem (see e.g.
[15], [16], [17], [18]). Works concerned with shape recon-
struction deal with fitting experimental data with general
models of surfaces (see e.g. [19], [20]). Various methods
are distinguished by the information used and the surface
model adopted to fit data. Allen [21] used bicubic (Coons’)
patches to fit data from vision and touch sensors, while
[22] used superquadrics; [23] approximated objects by sur-
faces of revolution, and were able to determine their axis of
symmetry by using tactile measurement of contact points,
contact normals, and curvatures at the contact points; [24]
considered haptic recognition of objects based on polyhe-
dral shape approximations.

With respect to the existing literature, where surface re-
construction is mostly intended for object recognition, the
problem we consider is to gather the surface information
necessary to obtain sufficiently accurate formulae for the
control vector fields appearing in the differential equation
of rolling (2). As these vector fields are computed through
differential operations from the surface description, it is
necessary not only that the reconstruction is given in terms
of analytic functions which are defined on as large a domain
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as possible, but also are sufficiently smooth to avoid noise
amplification through differentiation.

In order to master completely the accuracy/smoothness
tradeoff in reconstruction, we found tools from regulariza-
tion theory to be most effective (see e.g. [25] and [26]). In
that framework, the problem of finding the “best” function
approximating a multivariate function y(z), whose values
y; at k points z; are known (although with errors), is for-
mulated as the minimization of the variational expression

k

H(f) = (yi = f(:))” + N|PS|” (4)

i=0

where P is a differential operator used to weigh the “bumpi-
ness” of the approximating function, and X is a regulariza-
tion parameter, that controls the compromise between the
degree of smoothness of the solution, and its closeness to
data (][27]). Such standard regularization technique pro-
vides solutions that are equivalent to generalized splines:
for example, for single variable functions, it can be shown
that with the differential operator

1PsIF = [ [ 2 ] s

the solution of the regularization problem is given by cubic
splines. In general, solution of (4) leads to the associated
Euler-Lagrange equation

k
PPf(x) =~ > (yi — f(2))(x — z;) (5)
=0

> =

where P is the adjoint operator of P and § is the Dirac
delta function. The solution of (5) can be written as

k
F@) = 3 S~ 1) Gla; ) (6)
i=0

where G(z;z;) are the Green functions of the differential
operator PP. Green functions are actually radial functions
of their arguments G(z;y) = G(||x — y||) when P is rota-
tionally and translationally invariant. In such case, the
solution of the regularization problem is a sum of radial
basis functions:

kol

fx) =Y eG(le —will), (7)

=0

where the weights ¢; can be evaluated by simple linear alge-
braic operations. Some commonly encountered radial basis
functions used in regularization theory and in the closely
allied field of neural networks are

T (linear interpolation)

r? (cubic interpolation)
Gr)y={ V r2 + ¢ (multiquadric)

\/# (inverse multiquadric)

e o2 (gaussian)

The problem of reconstructing a surface described in
spherical coordinates (3) amounts to approximating a
smooth function p : S* — R, p = p(u,v) of the az-
imuth and elevation angles u, v, for which a set of points
p(u;,v;) = p; are given from exploration data. With re-
spect to the theory above resumed, the fact that the do-
main manifold S? is not globally equivalent to IR? imposes
some modifications in the choice of basis functions. Fol-
lowing [26], we choose

n l
p= Z Z fls}/;s (8)

=0 s=—1

where fis are coefficients, and Yjs are the eigenfunctions
of the (surface) Laplacian on the sphere, i.e. the spherical
harmonics, whose expression in coordinates is

Ups cos(us) P (sinv) 0<s<lI
Yis(u,v) = ¢ Ups sin(us)Pl‘sl(sinv) —-1<s<0 9)
Uio P, (sinv) s=0
for | =0,1,.... Here,
Uy, =+/2,/2%L (=]spPt o £0
s Ir (I4]s)!
-VE a0
P, 1=0,1,..., are the Legendre polynomials, and P’ are
the Legendre functions
Pi(2) = (1)1 - )8 O R(e)
0z%

Notice that Yjq are surfaces of revolution. The unknown co-
efficients are obtained by minimizing the regularized spher-
ical least—squares functional

k 2
H(A) = % Z ( Pi — Z;L:() le:,l fls}/ls(uia Ui) )
n l
A D+ (10)
=0 s=—1

Arranging the index set {({,s)} in a convenient order, and
letting f be the vector of f;; and X be the matrix with
(i,18)¢n entry Yig(ui,v;), (10) becomes

1
~lly = XFIP +2fTDf

where D is the diagonal matrix with (Is,[s): entry [I(I +
1)]™. The minimizing vector f is simply obtained by solv-
ing the following linear system of equations,

fr=XTX +AD)"1XTy.

IV. PLANNING ROLLING MANIPULATION

In this section we describe a technique for planning ma-
nipulation by rolling for general objects. Previous methods
proposed to this purpose include techniques for particular
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cases (typically, for a rolling sphere, see e.g. [7]), and very
general iterative methods such as the generic loops method
of Sontag [28], or the continuation method of Sussmann
and Chitour [29]. A technique was proposed in [10] which
effectively reduced the problem of planning for general sur-
faces to the solution of a system of two nonlinear algebraic
equations in two unknowns.

All the above methods share two intrinsic limitations.
Firstly they are, in one guise or another, iterative meth-
ods whose convergence rate is typically slow and hard to
predict (no general exact planning method is known at the
state of the art). Secondly, they do not consider the pos-
sible presence of obstacles. Planning among obstacles is
a crucial problem in our application, because joint limits
and physical boundaries of the manipulating surfaces im-
pose constraints on the configuration space.

The problem of planning for nonholonomic systems
among obstacles was attacked by [30] with an iterative
method derived from those of [28], [29]. A general approach
to the problem was considered by [31], who introduced a
general topological property of exact planning algorithms
in free space, capable of guaranteeing their applicability to
planning problems in constrained spaces.

Our aim in this section is to devise a planning algorithm
for rolling manipulation that 1) can guarantee convergence
to within a given tolerance of the desired final configura-
tions in a finite and predictable number of steps, and ii)
can be applied in the presence of constraints in the config-
uration space.

The basic ingredient of the planner we propose is a lat-
tice structure we superimpose to the configuration space of
the rolling system. The lattice, whose mesh size can be ad-
justed to suit the required accuracy, is obtained by choosing
a finite number of basic actions (which could be regarded as
control “atoms” or “quanta”) to be taken on the system,
and considering the effects on the system of applying all
the (countably infinite) possible different sequences of such
actions. The problem of steering on this lattice will then
be solved by constructing a suitable sequence of control
quanta. This technique was inspired by similarity with the
solution obtained to the planning problem for rolling poly-
hedral parts, where the quantized nature of control inputs
is intrinsic (see [32], [12]).

The rest of this section is organized as follows: in IV-
A we slightly generalize the definition of the topological
property of [31] to approximate planning algorithms, and
discuss its applications to nonholonomic systems in con-
strained configuration spaces. In IV-B we describe the
general structure of our proposed algorithm; IV-C intro-
duces the basic geometric construction underpinning the
algorithm, and IV-D contains the proof of the fact that
the proposed algorithm indeed has the invoked topological
property.

A. Planning nonholonomic systems among obstacles

Consider the problem of steering a nonholonomic system
on a manifold M between two configurations pg,pgoar €
M, through a trajectory which is admissible with respect

to both restrictions on the workspace and nonholonomic
constraints. A possible approach is to find first a solu-
tion to the (much simpler) problem obtained by removing
the nonholonomic constraints, and then to find an approx-
imation to that solution that satisfies the nonholonomic
constraint, while keeping away from obstacles.

Assume that the initial and final configurations belong
to the same connected component of the free configuration
space Cree, which is assumed to be an open set. Assume
further that a trajectory (or geometric path) v : [0,1] — M,
¥(0) = po, Y(1) = pyoar results from a global planner, such
that v(t) € Cree, t € [0,1]. The approximating nonholo-
nomic path T is in general comprised of a finite concatena-
tion of subpaths

L;:[0,1]—» M, i=1,...,N,

where Fl(l) = T (0), Fl(O) = po and Fl(l) S V(pl)
with V(p;) a neighborhood of a point p; on v. We do not
insist here that the approximating local planner is exact,
because such property is not enjoyed by any known planner
for rolling motion. However, for all i we assume that the
local planner output I'; is
o feasible with respect to the nonholonomic constraints,
and
o local-local, i.e. if the initial and final points of I'; are
close enough, then I'; does not exit a small neighborhood
of the initial point.
Denoting by B(p,€) a ball centered in p of radius ¢, a more
precise definition of the latter property is as follows:
Definition 1: A local planning algorithm is local-local if
for any initial configuration py and for all neighborhoods
U(po) of po, there exists a locally reachable neighborhood
R(po) C U(po) such that, for any goal configuration p; €
R(po) and for all € > 0, the algorithm provides a trajectory
[ :[0,1] — M steering the system from py = ['(0) to
P =T(1) € B(py,e) with (t) € U(po) Vt € [0, 1].
Such local-local property is clearly a relaxed version of the
“topological property” introduced by [31] for exact local
planners.
Let a tubular neighborhood 7 of the geometric path v be
defined as

T = UpE'yU(p)

with U(p) = B(p, e(p)), with €(p) bounded away from zero
(i.e., €(p) > € > 0,Vp € ), and assume that 7 C Cyree.
Under the assumptions above, a nonholonomic path T' in
the free configuration space can be computed by iteratively
applying a local-local algorithm as follows (see fig.IV-A):
1. Denote U(py) C 7 a neighborhood of py entirely con-
tained in the free configuration space, and let R(pg) be
the corresponding local reachability neighborhood of defi-
nition 1;

2. Choose p; = y(t) with t = max{s : B(y(s),e) C R(po)}
and compute I'; : po = py; with p; € B(p1,¢e) and T'y(t) €
U(po) Vt € [0,1];

3. For all j > 2, denote U(p;j—1) C 7 a neighborhood of
pj—1 and R(pj_1) the associated local reachability neigh-
borhood. Choose p; = v(t) with t = max{s : B(vy(s),e) C



INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, SUBMITTED 6

Fig. 2. Tterative application of a local-local planner provides an ap-
proximation of a geometric path that verifies both nonholonomic
and configuration—-space constraints.

R(pj—1)} and compute I'; : p; 1 — p; with p; € B(pj,¢)
and Fj(t) € U(ﬁj_l) Vit € [0, 1]

Observe that the procedure above terminates if 7 is such
that there exists § > 0 such that inf{ diam (R(p)), p €
B(v,0)} = & > 0. If this is the case the variable ¢ of the
algorithm must be smaller than &.

B. A local-local planner for rolling manipulation

We consider planning motions of an object of general,
regular shape on a planar finger, as described by (2). Let
d(,-) denote the distance between points p = (u,x,1)) in
the state manifold for our problem M = IR? x R? x S*
defined in section II.

Set po = (uo,®0,%0) € M and pga =
(Ugoalawgoala¢goal) € B(pOaéM)a with dp € R a (Small)
positive number.

We propose to steer approximately the system between
po and pgeqr through the following intermediate steps:

Stepl
Po Pa = (ugoala Ta, dja)

Step2 ~
Da 'Ef Db = (Ugoala-rba/‘/}goal)

Step3 _ ~ 7
Do Pgoal = (ugoal: Lgoal, ¢goal)

with ﬁgoal € B(pgoala 8)'

These steps will be described and analyzed in detail in
the following. To substantiate our claim that the algorithm
can steer a rolling body to an arbitrarily small neighbor-
hood of the desired final configuration using a finite num-
ber of maneuvers and satisfying the local-local property,
we need to introduce some further notation.

Denote

Sus 02,0y € R, positive with &, + 07 + 57, < 63,

Su, 02,04 € IR, positive with 0, + 02 + 67, < 03, (12)
and, finally,
2 si,sfp € R, positive with €2 + 2 + 5%& <ehy; (13)

The local-local property of the algorithm will be proved
by showing that the resulting trajectory (u(t),z(t),1(t))
is such that if wgoa € B(ug,6,) , Tgoal € B(xg,6,) and
VYgoar € B(to,0y), then Vt, u(t) € B(uo,dy), z(t) €
B(zy,d,) and ¢(t) € B(vo,dy) with

(s 0y 6p) 7> 0 fOr (84 0y ) = 0. (14)

Step 1 The first step consists simply in applying to sys-
tem (2) a constant control w(t) = w,, 0 <t < t, such that
ug — u(ty) = wgoqr exactly. The corresponding trajectory
on the plane is a straight line and its length is equal to
the Riemannian distance on the surface between ug and
Ugoar. Then if d(uo, Ugoar) < 5. we set 8, = 0, = 6,. By
geometric analysis of the system equations (see e.g. [10],
the infinitesimal variation ¢ is equal to the infinitesimal
variation of the angle between the coordinate direction of
the object surface and the tangent to the curve. Then in
a small neighborhood of ug the total variation of ¢(t) is
bounded and this bound decreases to zero with .

Step 2 Consider the set £ of closed, simple paths of
length ¢ on the object surface. Let 6 denote the direc-
tion of the curve at the initial point g4, in the reference
frame of the plane of the finger. Recall that rolling an ob-
ject on a plane along a closed path on the object surface
produces a change in the final orientation of the object
which is given by the holonomy angle, i.e. the integral
of the gaussian curvature comprised in the portion of re-
gion bounded by the curve. In the following subsection
(IV-C) a particularly useful subset R C £ will be intro-
duced, from which an element corresponding to a pair (8, 9)
can be chosen such that the corresponding holonomy an-
gle Ay < . Then there exists an integer N (the integer

part of W) such that ||¢vq + NAY — Ygou|| < ey

and the corresponding closed path (,g) applied N times
steers the system in a configuration p, = (¥goal, Tp, ¥ goa)
with g0a1 = e + NAY € B(hgoar;e4). The proof of
the local-local property of this trajectory is postponed to
subsection IV-D.

Step 3 By this step, the system is steered to some con-
ﬁgm‘ation (ugoalai'goaladjgoal) with ||jg0al - -Tgoal” S Ex by
applying the following method: observe that £ is a sub-
group of the fundamental group of closed paths with base
point wg0q;, i-e. L is closed under concatenation and in-
verse. Consider the map =:

=L -—R>xS!

where Z(I) = (v, A¢), where v denotes the total transla-
tion of the contact point on the plane, and At is the net
change in the orientation of the object that are obtained
corresponding to applying to the rolling object a motion
that makes the contact point on the object follow a closed
path (i.e., an element of £). For this map = the following
properties hold:

a) let I; and l> be any two paths in £ with E(I;) =
(v1, A1) and E(l2) = (va, Athz), then for their concate-
nation we have (in exponential notation)

Z(ly 0ly) = (v2eY1 + vy, Athy + Aghy).
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The first component of Z(l2 o [1) is the sum of two vectors
of IR? taking into account that the orientation of the ref-
erence frame on the tangent plane at contact point Ugoal
has changed by A, after that the execution of [; is com-
pleted. The second component denote the total change of
orientation produced by the two paths.

b) As the length [ of the path goes to zero, Z(I) — (0,0).
Indeed, = describes the end point map of a smooth differ-
ential system with piecewise continuous input, for which
continuity of solutions is given by classical results.

Now, consider the existence of closed paths [ € £ that
achieve translations of the object on the plane, without
changing its orientations, or in other terms, such that

=) = (v,0). (15)
By the composition law given above, it is clear that such
paths exist: indeed, for instance, any element of the com-
mutator subgroup of £ defined as

[£]={ll1,ls] =17 ol olyols, l,l> € L}

satisfies equation 15. Let LccL denote the set of such
paths, and consider a finite subset {l;,i = 1, M}, each cor-
responding to a pure translation of the object in the plane
by a quantity o; € IR?>. By concatenating (in arbitrary
order) such paths taken an integer number of times, i.e.
alfl ) agfg ) ---aMiM, a; € Z, a net translation of the
object is obtained that is given by

~

() = 101 0o alip 0 -+ - aepsOps (16)
In other words, the object can be translated by any integer
combination of the 2-vectors v;, that play the role of con-
trol quanta in our planning scheme. It is well known from
the theory of linear integer programming, that the set of
achievable translations resulting from (16) is a lattice of
points in the plane’.

Such lattice can be made arbitrarily fine. Indeed, assume
(it will be proved in section IV-C) that there exist paths
Il € L,i=a,b,j=1,2such that

12 =vil| <epi=a,b,j=1,2 (17)
Then, paths [; = [I1,12] € L, i =

(2

Hva;vb\l’ IIva;vbll} < ey

In conclusion, a suitable linear integer combination of
elementary paths [; can be easily found (by standard ILP
techniques such as Hermite normal forms, see e.g. [33]) that
steers the system to some configuration (ugoal, goal, @Z;goal)
with ||Zg0a1 — goat]] < €z- A bound on the number of
elementary paths that guarantee convergence to within the
desired tolerance can be provided (see [11] where the same
techniques are used in planning for polyhedral objects).
The local-local property of this kind of trajectories will be

shown in Section IV-D.

a,b are such that

max{

Lwe assume that all 9; have rational components

Uy

o,

\
. 6

\

Ugoa

Fig. 3. The geometric construction of a geodesic rectangle (top) and
its trace on the plane (bottom)

C. Geodesic Quadrilaterals

A particular class of closed paths can be used such that
the geometrical properties of the system are exploited and
the resulting trajectories can be easily computed. Closed
paths on the object’s surface that are comprised of seg-
ments of geodesic curves have the following very useful
properties:

o the corresponding trajectory on the finger is piecewise
linear. Indeed, if the contact point traces a geodesic curve
on one surface of a rolling pair, then it also traces a geodesic
on the second surface (see e.g. [34]). On the flat finger
surface, geodesics are straight lines;

o cach linear segment of the trajectory on the finger has
the same length as the corresponding geodesic segment on
the object surface; the angle between adjacent segments is
the same on the two surfaces;

o by the Gauss-Bonnet theorem, the total change in the
holonomy angle ¢ due to a piecewise geodesic path corre-
spond to the defect to 27 of the sum of the angles between
adjacent geodesic segments.

Consider then a geodesic quadrilateral R(6, o) comprised
of four segments of geodesics on the object’s surface. The
first point chosen for the construction is the base point
Ugoar (1.€., the desired point of contact on the object surface
reached after the first step of the proposed algorithm).

Recall that the object surface is parametrized by f :
R? — R>. A geodesic quadrilateral R(f, o) of size o € R
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and orientation § € S* is built as follows (see fig. 3):
1. let 1 (s) be a geodesic curve such that

00 T 7,

and o R = cost;

#1 (0) = Ugoal
2. let @i (s) a geodesic curve such that

W1 (0)

and - 2y

51 (0
1 (0) = ugoal Hg—EO;Il =0;

3. let p1(t1) = uy and o7 (t)) = u} be two points on the
surface such that their Riemannian distance from wgoq; is
0;

4. let p2(s) a geodesic curve such that

o o) T ea0) _ .
¢2(0) =y and D Gy = 0;

5. let o3 (s) a geodesic curve such that

or(t) T

3 (0)
Tér @ 0.

and e =

¢y (0) =
6. 3 and s intersect each other, at least for g sufficiently
small. Denote g = sup{o : 3 N2 # B}. Consider the
point of intersection us = a(ts) = @5 (th) between the
two curves and let ¢ be the angle between the two curves
at point us.

Finally, let R(6,0) be the geodesic quadrilateral join-
ing points wgoar, w1, U2, U], Ugoa through the geodesics
P1, 902l7 ¥2, (pll'

Observe that, for small enough p, the point us belongs
to some neighborhood of u404. Moreover, the angle ¢ be-
tween 3 and @o at us, d(ui,us) and d(u},us) depend
continuously on p, in particular

lim d(uy,uz) = hm d(uj,u2) =0 (18)
0—0
and
o= o

Next we describe the trace of the geodesic quadrilat-
eral R(f,0) on the plane (see fig.3, bottom), which is
comprised of 4 straight segments of length d(ug,u;) =
0,d(uy,us),d(us,uy) and d(u},ug) = o, respectively, and
angle 6,6 + 7,60 + 37” — ¢ and 6 — ¢.

Clearly, any geodesic quadrilateral is an element of the
group L described in the previous section and, denoting
d(uy,u2) = 1 and d(us,u}) = o}, we have that its action

on the rolling object configuration Z(R(0, o)) = (v, Av) is
given by
v (9 +o1e'® + e’ T 0+ Qe_w) , (20)
and (using the Gauss-Bonnet theorem)
™ ™
A¢_(3§+¢)—27r——§+¢. (21)

D. Proof of the Local-Local Property Using Geodesic
Quadrilaterals

First we show that the second step of the proposed al-
gorithm verifies the local property. By equation (19) and
(21) we can fix o < g such that Ay < =, Then the
trajectory u on the object surface is the geodesic quadri-
lateral R(p,6) repeated N = [Wl—fﬂ] times. Clearly
u C B(ugoar, ) with 6, = C’p for some constant C’. As
to locality of Step 2 in the plane, observe first that v € R?
with Z(R(e,0)) = (v, Ae) is such that

lo]l < C¢? (22)

for some constant C'. Indeed from equation (20) we obtain

[0]2 = (¢ — ¢f sin g + pcos §)* + (o1 — gf cos ¢ — psing)”
and, being ¢ = £+0(¢), & = 1+0(o), and 9_91 =14+0(p),
we immediately obtain (22) Moreover, we have the follow-
ing facts:

Ay = / Kdu dv > Kpino®
Q

where (1 is the region bounded by the geodesic quadrilateral
and K and K,,;, are respectively the Gaussian curvature
and the minimum of the Gaussian curvature in the closed
region 2, and
2. let V=" vei"A¥ be the total displacement on the
plane; then ||V < Nv||

From equation (22) it follows that

< 1]
- szn

|¢ ¢goal| 2 < | wl

2
Av S Kom2 2

Vil < C

min Q

Then we have that the trajectory = on the plane is such
that & C B(z1,d,) with §; = C ok = '8, O = <

There remains to show that the local-local property also
holds for the third step 3 of the proposed algorithm. To
prove this, it is sufficient to find o < g such that Z(R(o,0))
verifies equation (17). By equation (22) it is sufficient to
choose o < min{C’,/e;, 0}, with C' some positive constant.

On the object surface the trajectory w is entirely con-
tained in a neighborhood B(ugear,d,) with 6, = C'p for
some constant C'. Moreover, along the trajectory, by equa-
tion (19),

[0 < [Av] + o] = |5 = 1] +15 = dal = C'
for some constant C'. Then for the trajectory  of the
orientation it holds ¢ € B(¥goa1, 0y) With dy = C’0.

Finally for the trajectory = on the plane, a suitable com-
bination of /; and > can be found such that z € B(z»,d.)
with §, = 6,.

Finally, let C' be a constant bigger than all the constants
C" found above, then we have that the parameters of equa-
tion (11) which hold for the global trajectory through steps
1,2, and 3 are (see fig.4,fig.5 and fig.6) as follows:
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Fig. 4. The complete trajectory of the contact point on the object

surface provided by the geodesic quadrilateral algorithm (¢ =

-

Fig. 5. The complete trajectory of the orientation provided by the
geodesic quadrilateral algorithm (a two dimensional sketch is used
for illustration,, although orientation is one-dimensional).

(5¢ = _C(su + 511; ‘+‘_OQmin
Oy = 8y + 3, + OBy

where 0,,;, is the minimum among the parameters g of
Steps 1,2 and 3. Clearly any ¢ < gnin satisfy the local and
steering properties of the algorithm and equation (14).

To illustrate the results of the above described algorithm,
we report in Extension 1 (fig.7) the solution obtained for
the problem of planning rolling motions for an ellipsoid
(with principal axes of length 30, 30, and 20 ¢m) within a
corridor of width 55 e¢m and height 25 ¢m. The solution
to this rather complex planning problem was obtained on

Fig. 6. The global trajectory of the contact point on the plane
provided by the geodesic quadrilateral algorithm.

LiEEERE L

Fig. 7. Four frames of video in Multimedia Extension 1 (download-
able from ftp://131.114.28.35/pub/uploads)

a Pentium-3 processor at 1.5 GHz in less than 1 minute,
with an accuracy on the final configuration equal or bet-
ter than 1% of the range of variation of each component.
By reducing the required accuracy, faster calculation times
can be achieved: however, such reduction is limited in this
example, where the computational bottleneck is to find a
path through the narrow passage among obstacles.

V. THE DEXTROUS GRIPPER DX-GRIP-II

To experimentally validate the results of the theoreti-
cal work on manipulation by rolling conducted in the past
years, the research group at Centro “E. Piaggio” of the
University of Pisa designed and built two prototype end—
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Fig. 8. The first University of Pisa Dextrous Gripper (DxGrip-I).

Lipper jaw
Trirescts D ve i
Wl otor Houemg /
- {
FI'T sensar NI : I-I . Flange
(el i
i e o
Lz Y
Rotating Pads =i s
-..-'I"l. | |
|_.-' R— = Twin Foar-
| L -
o — I Bar Lekagy
High-friction ~ #
maienal ]
Lower jaw

Fig. 9. Design of the second Dextrous Gripper of the University of
Pisa, DxGrip-II.

effectors. The first “dextrous gripper”, consisting of two
parallel plates controlled by prismatic joints, was described
in [8] (see fig.8). The gripper has two parallel planar jaws,
of which the lower translates horizontally thus imparting
rolling motions to the object, while the upper applies suit-
able grasping forces (measured by the force-torque sensor
shown above the upper plate). Due to the kinematic decou-
pling among positioning and gripping d.o.f.’s, the operation
of DxGrip-I was very simple and accurate. The gripper pro-
vided an excellent testbed for manipulation of both smooth
and polyhedral surfaces, and has been employed for several
experiments in the laboratory. However, some constructive
features of DxGrip-I were not well adapted to building a
robot gripper for genuine applications. In particular, the
three lead-screw prismatic joints, two of which in cascaded
arrangement for realizing the x-y movement for the lower
jaw, made the overall design somewhat bulky and costly.
The main motivation to design a second generation dex-

trous gripper was to have a versatile device that could be
considered as a viable substitution for current end-effectors

" < I
EIUI — =[F:'I'r--:. -F:
h‘aﬁ___
L] N

-
-'\- - )

Fig. 10. Operation as a grasping and reorienting device

Fig. 11.

Operation as a non—grasping manipulation device

at least in light-duty robotics applications. The design of
DxGrip—Il is described in fig.9. The gripper has two parallel
jaws translating independently, and two turning disks on
the jaws. Each jaw is driven by a DC minimotor (mounted
within the gripper flange) through gears and a twin four—
linkage mechanism, consisting of two four—bar linkages in
quadrature. This mechanism eliminates singularities, so
that the jaws can move smoothly across the configura-
tion where the two legs shown in the figure are aligned.
Each jaw has a rotating fingerpad actuated by miniature
direct—drive brushless motors. These motors were built in
our laboratory, by modifying existing motors designed for
the spindles of high-performance computer disk—drives, for
which the control logic and hardware were completely re-
designed.

The hand has force/torque sensors on each fingerpad.
Six—axis sensors are realized by strain—gages on the three
flexures of a modified Maltese cross, to which the direct
drive fingerpad actuators are fixed. By adding the mea-
surements from the two jaw force/torque sensors, an equiv-
alent wrist force/torque sensor is obtained. Intrinsic Tac-
tile Sensing algorithms are used to elicit information on the
location of the centroid of contact, the intensity and direc-
tion of contact force, the local torque, the risk of slippage,
etc..

The low-level control of actuators is performed by a mi-
crocontroller (68HC11), with 512 bytes EEPROM and 512
bytes RAM, external 32K RAM and 32K EPROM. The
microcontroller is connected to a host PC via fast RS232.
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Fig. 12. Operation as a dextrous manipulator by rolling the object

Fig. 13. First frame of video in Multimedia Extension 2 (download-
able from ftp://131.114.28.35/pub/uploads)

The microcontroller counts encoders, closes position con-
trol loops on the motors, reads A/D converters, manages
timing, interrupts and communication with the host com-
puter. The host computer evaluates forces/torques from
sensor readings, computes intrinsic tactile sensing, plans
and controls the kinematics of motion of the gripper.

As a consequence of the kinematic arrangement of
DxGrip-II, the distance between the jaw planes can be
changed independently from the distance between the axes
of the revolving fingerpads, while the jaws always keep their
parallel orientation. While the distance d.o.f. is used to
control the grasping force so as to avoid slippage, the rela-
tive translation can generate a torque about an axis parallel
to the plates, capable of inducing rolling in manipulated ob-
jects. Rolling along a perpendicular axis in the same plane
can be obtained by combination of rotatory motions of the
two plates. To generate such rolling torques and accomo-
date for the necessary compliance, fingerpads are covered
with compliant, high friction material.

A seemingly difficult question arises in precisely mod-
eling the frictional behavior of contacts. In particular,
if both contacts were assumed to be of “soft-finger” type

Fig. 14.
kinematic arrangement.

Photographs of DxGrip-ll showing the dimensions and the

([3]), i.e. preventing any spinning about the normal axis
to the plates, then only motions with zero relative angu-
lar velocity of the two plates would be allowed. On the
other hand, if both contacts are modeled as “hard-fingers”,
an indeterminacy of motion would ensue (rotations about
an axis through the two contact points would result un-
constrained). However, careful consideration of manipula-
tion experiments naturally leads to easy solutions of this
difficulty. A first possible solution is to consider a hard-
finger model for both contacts, and impose that no rota-
tions are allowed along the mentioned axis through contact
points. According to this model, a spinning component w,
of the angular velocity (perpendicular to the plate) would
be present in general at the contacts: this effect could be
taken into account (and compensated for) by considering
corresponding terms in the rolling equations ([4]). In prac-
tice, however, we have found that by simply preparing the
two fingerpads so that one has slightly lower friction than
the other, the actual phenomenon is very well modeled by
assuming a soft finger contact on one pad, and a hard-finger
contact on the second.



INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, SUBMITTED 12

222
SN

71775

7
i

775

777755

i
T

=

Fig. 15. Exact description of the manipulated object (upper left), and
approximations with A = 0,002 and N =7 harmonics (under-
damped, upper right), with A = 0,05 and N =9 (overdamped,
lower left), and with A = 0,002 and N =9 (lower right).

The dextrous gripper has several modes of operation:
A) As a conventional parallel-jaw gripper, with the possi-
bility of changing the grasp center—point in one direction.
Wrist—force sensing and contact and friction sensing on the
jaws is available through the combination of information
from the finger force sensors.

B) As a reorienting device for grasped objects. Elongated
objects such as tool handles can be rotated about the fin-
gerpad axes and/or about their own axis, by combining
equal or opposite angular velocities of the rotating finger-
pads (see fig.10).

C) As a non-grasping manipulating device. The external
cylindrical part of the fingerpads’ surface can be pressed
on flat parts lying e.g. on a conveyor belt, and manipulate
them in the plane by translations and/or rotations, by com-
bining equal or opposite angular velocities of the rotating
fingerpads (see fig.11).

D) As a dextrous manipulator, capable of arbitrarily dis-
placing and reorienting a manipulated object by rolling
it between the fingerpads. This manipulation feature ex-
ploits the above mentioned results on nonholonomic sys-
tems planning and control, showing that practically any
object (including objects bounded by polyhedral hulls) can
be arbitrarily manipulated in 3D space by suitably combin-
ing the d.o.f.’s of the dextrous gripper (see fig.12).

A pictorial animation of DxGrip-2 used in a variety of tasks
is reported in Extension 2 (fig.13). Two pictures of a pro-
totype version of DxGrip-ll are reported in fig.14. It should
be pointed out that, while the use of turntables at the
fingers of a gripper has already been proposed by Nagata
[35], DxGrip—II has the possibility of translating the center
of one turntable with respect to the other, thus achieving
higher dexterity and most importantly the ability of rolling
an object in all directions between the fingers.

A. FEzperimental Results

Experiments to assess the performance of the proposed
exploration and reconstruction procedure have been per-
formed using the hardware described above. The force sen-
sors on the gripper jaws are used to control the grasping

Fig. 16.

Three objects and their reconstruction from experimental
data gathered by rolling manipulation.

force and avoid slippage. To detect the location of contact
points on the upper and lower fingers, the same sensors can
be used in conjunction with the “intrinsic” tactile sensing
algorithms described in [36].

Figure fig.15 shows the effects of various parameters in
the reconstruction algorithm. Apparently, using few spher-
ical harmonics (low N) and/or low regularization weights
A provides “bumpy” reconstructions, while heavy regular-
ization tends to round up the object shape excessively. The
correct tradeoff in filtering has to be decided on the basis
of a working knowledge of the sensor noise statistics and of
the application domain. Experimental reconstructions of
three different objects are reported in fig.16. The third ob-
ject, whose surface is obtained by intersecting a cone with
a sphere, poses a challenging problem to approximation, as
the nominal surface contains the whole spectrum of spatial
frequencies, from zero (along the cone generatrices, where
the gaussian curvature is zero) to infinity (at the cone ver-
tex). In general, the reconstruction accuracy is probably
less than what could be obtained by other means, such as
e.g. optical. However, we consider the obtained results to
be quite satisfactory, in view of the following facts:

o the procedure uses only (noisy) force sensors, but could
be easily integrated with other data (a priori known, or
from optical sensors);

o shape reconstruction is done while manipulation pro-
ceeds, and not in a preliminary calibration phase;

o a mathematical description of the object is obtained,
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which is globally valid and everywhere smooth on the ob-
ject’s surface. This is an important point to allow the appli-
cation of manipulation planning algorithms. The necessary
degree of regularity of the mathematical model to be used
in planning inherently conflicts with accuracy, and forces to
“smooth out” vertices of the reconstruction (see e.g. the
third object in fig.16). Other reconstruction approaches,
based on local approximations of the surface (such as those
used in CAD and computer graphics), might achieve a bet-
ter accuracy pointwise, but would be unsuitable to the
planning phase.

VI. DiscussioN AND CONCLUSION

In this paper we have considered some of the problems
that hinder the practical implementation of dextrous grip-
pers exploiting nonholonomy of rolling. In particular, we
have described a technique for dealing with objects of un-
known shape, in order to reconstruct a mathematical model
of their surface by performing rolling manipulation experi-
ments, and an algorithm for planning rolling manipulation
of objects with general surface. We have also described
the implementation of devices designed to implement ma-
nipulation by rolling in practice, and described some ex-
periments performed with these dextrous grippers. Several
open problems remain to date. In particular, when con-
necting the exploratory technique described in section III
to the planning algorithm described in IV, important ques-
tions arise as to the effects of reconstruction inaccuracies on
planning. As it can be expected, it has been experimen-
tally observed that such inaccuracies degrade the results
of experimental execution of trajectories planned on the
nominal reconstructed surface by some extent. Although
in many cases this degradation would still be acceptable
(this being the case in particular when planned manip-
ulatory trajectories where rather simple), in general the
problem of robustness of planning to modelling errors is
a complex and widely open problem. A natural solution
to such problem would be to implement feedback control
strategies instead of open loop planning. However, at the
state of the art, there is a lack of effective techniques for
closed loop control and stabilization of rolling manipula-
tion. Some steps in that direction have been undertaken
by [37], who use the iterative replanning scheme of [38] for
the stabilization of a sphere on a plane. Such scheme can
in principle be extended to more general systems, provided
suitable planners are available: the local-local property of
the planning algorithm described in section IV is indeed
potentially very useful in that regard. Future work will be
devoted to inquire into these problems.
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