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Abstract

Background: State-of-the-art bionic hands incorporate hi-tech devices which try to overcome limitations of
conventional single grip systems. Unfortunately, their complexity often limits mechanical robustness and intuitive
prosthesis control. Recently, the translation of neuroscientific theories (i.e. postural synergies) in software and hardware
architecture of artificial devices is opening new approaches for the design and control of upper-limb prostheses.

Methods: Following these emerging principles, previous research on the SoftHand Pro, which embeds one physical
synergy, showed promising results in terms of intuitiveness, robustness, and grasping performance. To explore these
principles also in hands with augmented capabilities, this paper describes the SoftHand 2 Pro, a second generation of
the device with 19 degrees-of-freedom and a second synergistic layer. After a description of the proposed device, the
work explores a continuous switching control method based on a myoelectric pattern recognition classifier.

Results: The combined system was validated using standardized assessments with able-bodied and, for the first
time, amputee subjects. Results show an average improvement of more than 30% of fine grasp capabilities and about
10% of hand function compared with the first generation SoftHand Pro.

Conclusions: Encouraging results suggest how this approach could be a viable way towards the design of more
natural, reliable, and intuitive dexterous hands.
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Introduction
Capturing the richness and complexity of the sensory-
motor functions of the human hand in a prosthetic
device remains one of the challenge in modern science
and engineering [1]. State-of-the-art commercial prosthe-
ses include sophisticated poly-articular hands, designed
to match the appearance and function of human hands
through the ingenious combinations of multiple motors
and sensors [2]. The classical approach to manage their
advanced dexterity consists of using a pair of surface
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electromyographic (sEMG) sensors to control one degree
of freedom (DoF) at a time and switch between sev-
eral motion patterns through different input strategies
[3]. Muscles trigger sequences, such as co-contractions
[4], are among the most used techniques in commer-
cial devices. Alternative solutions include control through
mobile apps, the use of short-range proximity sensors, or,
the combination between sEMG sensors and inertial mea-
surements units [5]. Unfortunately these hi-tech devices
are often overcome by simple non-anthropomorphic
hook-like systems, usually preferred for their reliability,
robustness and simplicity of control [6, 7].
To address current limitations, clinical and engineer-

ing research is investigating new strategies to improve the
level of acceptability of these advanced devices, e.g. mini-
mizing the cognitive effort or increasing their robustness.
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From a clinical point of view, two successful and innova-
tive approaches are those based on Targeted Muscle Rein-
nervation (TMR) [8, 9] and intramuscular EMG [10], via
wireless transceivers [11] or an osseointegrated implant
[12]. All of these techniques considerably increase users’
capabilities to selectively activate several muscles in a
more natural fashion, and consequently to control multi-
ple DoFs. From an engineering point of view, significant
improvements over conventional methods are given by
the introduction of simultaneous and proportional myo-
electric control using linear regression techniques [13,
14], which create a continuous map between EMG sig-
nals and the intended movements or pattern recognition
algorithms, mostly based on the information of muscles
groups. The latter are exploited following several tech-
niques [15–19], but a widely used approach is based on
a classifier [20–22]. Over the past two decades, pattern
recognition technology has shown promising results in
providing more intuitive control of myoelectric prosthe-
sis, and has been incorporated into commercial devices.1,2
However, while pattern recognition guarantees higher
robustness within each identified class, it introduces some
restrictions in terms of flexibility (i.e., commercial sys-
tems require the full re-opening of the device in order to
switch between different grips). Recently a deeper knowl-
edge of the human sensory-motor architecture and the
adoption of soft robotic technologies are contributing
to the development of a new generation of more effi-
cient bionic limbs. The neuroscientific concept of postural
synergies [23] is one of the most explored approaches
and consists of the introduction of coordinated finger
movements, which takes inspiration from human motor
control principles. This approach demonstrated its effec-
tiveness in several aspects of the development of artificial
hands, including kinematic studies [24], control architec-
tures of multi degrees of actuation (DoA) hands [25–27]
and also mechatronic design [28]. Looking at the signal
processing and control field, a promising approach con-
sists on postural control algorithms based on principal
component analysis [29], which map the principal com-
ponent coordinates into hand joint angles. This method
allows to continuously control different grips, increas-
ing the control intuitiveness of multi-DoA hands [26]. In
response to the need for increased device reliability and
robustness, in the last decade, there are evident trends
toward a strong simplification of the system in terms of
the number of actuators and sensors adopted [30], i.e.
through the introduction of underactuation and hand syn-
chronized motion. Still exhibiting an anthropomorphic
design, these novel devices are capable of performing a
useful subset of the functions of human hands, with a

1CoApt LLC - https://www.coaptengineering.com/
2Ottobock, Myo Plus Pattern Recognition - https://www.ottobock.com

consequent reduction in terms of control complexity and
an increase of device reliability [31–33]. Taking advantage
of the studies on human postural synergies [34], the Soft-
Hand Pro (SH-P) [28] is anthropomorphically designed
with 19 DoFs, soft roll-articular joints and a single actu-
ation unit. Although its structure is almost comparable
to the one of the human hand, the physical synergistic
architecture allows to control the SH-P with only two
sEMG sensors. This design strategy introduces the pos-
sibility to perform complex physical interaction tasks,
higher robustness and intuitiveness, while still demon-
strating good skills in terms of grasp capabilities. Such
encouraging results suggest to extend these principles
towards hands with enhanced skills, but still capable to
maintain an intrinsic simple and robust architecture and
a reasonably natural control method. To deal with this
dexterity-complexity trade-off, we proposed the Pisa/IIT
SoftHand 2 (SH2) [35], which tries to embed the advan-
tages of the synergy-based postural control directly in the
hand mechatronic design. The SH2 still has 19 DoFs but,
using two actuators to reproduce approximately the first
two synergies of the human hand, shows a higher level of
dexterity.
In this work, we introduce the SoftHand 2 Pro (SH2-

P), the prosthetic release, characterized by a light-weight
design and suitable to be connected with a prosthetic
socket and multi-channel sEMG system (see Fig. 1). To
extensively investigate the role and efficacy with real pros-
thetic users, this study presents the SH2-P controlled
with a pattern recognition classifier and an ad-hoc multi-
channel sEMG system explicitly designed for clinical use.
Similar to the approach successfully tested with postural
control algorithms, this work implements a continuous
switchingmethod tomove between different grip patterns
able to introduce more flexibility to conventional pattern
recognition classifier. The user is able to seamlessly shift
the hand between grasp positions without moving along
pre-defined open and close positions for each grip. The
resulting system can be controlled in a simultaneous, pro-
portional and continuous way, avoiding the drawback of
conventional approaches, which requires stopping in an
initial position (usually hand-open) in order to switch
between different grips (or patterns). A preliminary val-
idation of this approach with only 3 able-bodied sub-
jects was presented in a previous work [36]. This study
includes for the first time also amputee subjects which
tested the device using standardized functional assess-
ments (Box and Blocks Test and Jebsen-TaylorHand Func-
tion Test) and a subjective survey. Results show improved
fine grasp capabilities and performance compared with
the SoftHand Pro and suggest how the approach can be
a viable way towards the design of more natural and
intuitive dexterous hands. The rest of the paper is orga-
nized as follows: “Materials and methods” presents the

https://www.coaptengineering.com/
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Fig. 1 An amputee subject moving a card with the SoftHand 2 Pro. The index point grasp is used to execute the task

prosthetic prototype, the control algorithm and a descrip-
tion about participants, experimental setup and protocol.
The results on both able-bodied and amputee subjects
are presented in “Results” and compared with the SH-
P and other research prototypes and control methods
from literature. “Discussion” discusses the insights gained
from these results and the limitations of the study. Finally,
“Conclusion” sections draws the conclusions of our work.

Materials andmethods
SoftHand 2 Pro
The SoftHand 2 is a soft articulated anthropomorphic
robotic hand with 19 DoFs, which can perform sophis-
ticated tasks with a higher level of dexterity but using
only two motors (see Fig. 2). Indeed, through the physical
introduction of hand coordinated movements, it is possi-
ble to considerably reduce the architectural complexity in
terms of actuators and sensors, and consequently increase
the device robustness and reliability. Preliminary investi-
gations on the robotic prototype have been done in a pre-
vious work [37], where authors explored the possibility to
use specific signal maps relying only on two EMG signals.
The SH2-P is capable of spanning continuous movements
in the synergy bi-dimensional space, through the simulta-
neous and coordinated activation of the two actuators. To
fully exploit such feature in a previous work [38], authors
investigated the possibility to control the hand in a pro-
portional and simultaneous way relying on the use of an
off-the-shelf low cost multi-channel system (a MYO Arm
Band). Although only preliminary (one healthy subject
testing the robotic release of the hand), results reported
in a previous work [38] show the hand capabilities while

performing activities of daily living, and possible bene-
fits that can be encountered from using continuous and
proportional control strategies.
Since the promising results achieved by previous works,

a new version called SoftHand 2 Pro (SH2-P) was designed
to test its extended functionalities in the prosthetic
field. The new prototype uses two MAXON DCX 16s
12V motors coupled with 83:1 gearboxes, to guarantee
the same performances of the SH-P [28], but with an
effective reduction of the hand size and, consequently,
of weight.
Table 1 shows a comparison between the robotic and

the prosthetic releases. As presented in the exploded view
of Fig. 3a, the novel hand design is self-contained, and
integrates the actuation system, sensors and a custom
electronic board [39] directly in the palm. The device is
also equipped with a passive pronation-supination Otto-
bock quick disconnect prosthetic wrist. Thanks to the use
of a single actuation tendon that moves from the palm
base through all the fingers and exploiting the effect of
the device transmission friction, the SH2-P is capable to
span continuously its motions in the synergy space, reach-
ing specific points where it is possible to identify definite
grasping postures (showed in Fig. 3b):

i Hand Open, the rest position with the fingers fully
open;

ii Power Grasp, a configuration with all the fingers fully
closed, useful to grasp big or heavy objects;

iii Fine Pinch, a configuration where the thumb goes in
opposition with the index, more indicated for
precision grasps of small objects,
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Fig. 2 Representation of the defined gestures of the SoftHand 2 Pro and the possible path generated by the simultaneous activation of the 2 DoA.
Note that the movement activated along the vertical direction reproduces the same movement of the SoftHand Pro

iv Index Point, a configuration where the index is
pointing and other fingers are closed, useful to press
buttons or keys.

The guidelines of its design take inspiration from the
neuroscience-based notion of soft synergies [23] and
their translation into augmented adaptive synergies [35].
This approach allows users to exploit frictional effects
to achieve advanced motions, with the aim to increase
the performance of the device without over-raising the
complexity of the whole system. The first degree of actu-
ation implements a coordinated closure of all fingers (see
Fig. 2, vertical direction) correspondent to the first syn-
ergy of grasp in humans [23], which is a very fundamental
ingredient of human hand control [40, 41]. The second

Table 1 Hand Characteristics

Specifics SoftHand 2 SoftHand 2 Pro

Dimension 25 x 15 x 6.7 mm 21 x 15 x 5 mm

Weight 712 gr 491 gr

Motor Maxon DCX 22s Maxon DCX 16s

Reduction Rate 83:1 83:1

Voltage 12V 12V

degree of actuation implements relative motion between
the fingers, as shown in Fig. 2 (horizontal direction).
The opening and closing movements of left fingers with
respect to right ones (and vice versa) is found in the
second and third postural synergies of grasp [23], the sec-
ond manipulation synergy [42], in the second synergy of
haptic exploration [40], and in the third synergy of envi-
ronmental constrain exploitation in [41]. We believe that
the implementation of a similar motion could be a valid
instrument to embed a higher level of dexterous capabili-
ties. Amore detailed discussion can be found in a previous
work [35]. Furthermore, in-hand manipulation skills can
be obtained moving the hand from fine pinch to index
point, as showed in the hand movements of Fig. 4. Please
refer also to the video attachment for more details. In past
research, several valuable approaches exploit the use of
a synergistic method to control multi-DOFs hands [24,
25, 29]. However, in the SH2-P such synergistic layers
are physically implemented in themechanical architecture
of the hand, and not reconstructed from specific con-
trol algorithms that coordinate multiple motors acting on
individual fingers. This leads to a considerable reduction
in terms of actuators unit and sensors required, with the
aim to find a proper trade-off between hand dexterity and
device robustness.
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Fig. 3 SoftHand 2 Pro design. Panel a shows the exploded view of the SoftHand 2 Pro, with the main components highlighted. SoftHand 2 Pro
presents a self-contained design, where the two motors, electronic board and sensors are integrated in the dorsal side of the prototype. The
prototype is equipped with an Ottobock quick disconnect prosthetic wrist. Panel b shows the frontal (top) and lateral (bottom) view of all the
possible SoftHand 2 closures: Hand Open (first column), Full Finger Closure (second column), Pre-shape Fine Pinch (third column) and Pre-shape
Index Point (fourth column). Full Finger Closure reproduces the same movement of the SoftHand Pro

Fig. 4 An example of the system driving the hand control from fine pinch to index point. Panel a shows the pattern recognition classifier and the
reference motor position of both actuators is presented in b. Once the classifier detects the index point class, the system commands the actuators
of the artificial hand towards the new gesture. The control input is proportional to the muscle activation and commands the two motors in
opposition, to move the hand from fine pinch to index point. It is also possible to stop in intermediate configurations
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Continuous switching control method
A widely used approach to control advanced hand dex-
terity consists of using pattern recognition techniques
based on a classifier. Pattern recognition control meth-
ods are based on the assumption that the residual limb
is rich in information about the intended movements and
these data can be clustered in groups and used to identify
different motions. The extracted information is fed into
a classifier, which is trained to recognize selected hand
postures. Once the system is in the initial position and
a defined grasp pattern is identified, the device is com-
manded to move and reproduce the associated posture.
Although possible in principle, one of the main draw-
backs of such approach, when used in combination with
off-the-shelf devices, still remains the incapability to have
proportional and continuous control of all the joints of a
multi-digit hand. This is mainly due to the mechatronic
architecture of commercial anthropomorphic hands and
to the limited possibilities of integration (usually off-the-
shelf systems do not allow access to low-level features).
Consider a fully actuated prosthetic hand whose mechan-
ics allow up to three different gestures (i.e. called G1, G2,
G3) and hand open (HO) as an initial position. Using
an opportune number of sEMG sensors and a pattern
recognition classifier, each combination of muscles con-
tractions of the user is identified with the appropriate class
of motion and drives control of different hand postures.
However, the use of a classification method in combina-
tion with commercial prosthetic hands, requires to reach
the initial state to enable the switch between different ges-
tures, limiting intuitive control. As schematically shown
in Fig. 5a, the actual position of the hand (represented by
the blue point) can be proportionally controlled only along
the path between the initial hand open position (HO) and
the recognized gesture (i.e. G1, G2, G3). The method pro-
posed in this work, which we call the continuous switching
control, implements a classifier that allows to move con-
tinuously from one gesture to another, as represented in
Fig. 5b, exploiting the main features of the SH2-P. In this
case, when the activation pattern is recognized, the hand
prototype is able to immediately reach the new state, over-
coming the requirement to stop in an intermediate posi-
tion. The change of state is determined by the classifier.
If the pattern recognition algorithm detects a new motion
class (with an activation value over a settled threshold),
a motor control command is immediately sent to the
prosthesis controller, which maps the features extracted
from the EMG signals into motor reference positions. The
motor positions are acquired using magnetic sensors, as
showed in Fig. 3a.
Figure 4 presents an example, where the system drives

the hand control from fine pinch (c) to index point (f ).
Once the algorithm detects a minimum level of con-
traction necessary to initiate the index point, the system

directly commands the actuators of the artificial hand
towards the latest recognized gesture. The control input,
which is proportional to the muscle activation, moves the
two motors in opposite directions and actuates all joints
at the same time through a unique tendon, resulting in a
re-opening of the thumb and index finger and a closure of
the other three fingers.
The use of two different synergistic directions with the

characteristic hand mechanics allow to obtain combined
movements which cover the whole space represented in
grey in Fig. 5b, without requiring the introduction of addi-
tional classes in the pattern recognition algorithm. The
same method can potentially be applied to a fully actuated
robotic hand through a proper control algorithm, while in
the SH2-P is done by exploiting the specific architecture.

Participants
Five able–bodied subjects took part in the preliminary
experimental evaluation (3 males and 2 females, 4 right-
hand and 1 left-hand dominant) with no impairments and
ages between 21 and 29 years old. The system was also
tested with 3 trans-radial amputee subjects (see Table 2),
two of which had previously undergone TMR surgery.
All the subjects were unilateral amputees, two of which
are myoelectric users and one is a body-powered user.
Subjects were not blinded to the pattern recognition con-
trol method but they never tested the SH2-P and the
continuous switching method. The following study was
approved by the Northwestern University Institutional
Review Board and all participants gave their informed
consent.

Experimental setup
The control architecture used in this work is schematically
presented in Fig. 6a. The myoelectric signals are collected
from the forearm of the user through a group of 8 sEMG
sensors. Each subject wore eight equally-spaced pairs of
stainless steel dome electrodes and one reference elec-
trode (Motion Control Inc.), with inter-electrode spacings
of approximately 2.5 cm. Signals were sampled at 1 kHz
using a Texas Instruments ADS1299 bio-instrumentation
chip. A multi-class linear discriminant analysis (LDA)
classifier [43] was trained for five classes, using the Con-
trol Algorithms for Prosthetics System (CAPS), devel-
oped by the University of New Brunswick (Fredericton,
New Brunswick, Canada) and Rehabilitation Institute of
Chicago (Chicago, Illinois), now known as Shirley Ryan
AbilityLab. The selected classes correspond to the defined
gestures of the SH2-P: no movement, hand open, power
grasp, fine pinch and index point (represented in Fig. 3b).
To guarantee good classification accuracies [16, 44], four
time-domain features (mean relative value, waveform ver-
tical length, zero crossings and slope sign changes) were
extracted from each channel over 250 ms windows with
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Fig. 5 Schematic representation of a standard myoelectric pattern recognition classifier a and the proposed continuous switching method b. The
blue dot refers to the current hand position, while the other coloured dots represent four different hand final positions, described as HO, G1, G2, G3
in this example. The classical approach require to reach the hand open state (HO) to enable the switch between different gestures (i.e. G1, G2, G3,..),
while the proposed method allows to move continuously from one gesture to another

100 ms overlap (selected based on previous work [45]).
Data were band-pass filtered between 30-350Hz. Data
were collected and applied to train a linear discrimi-
nant analysis classifier and features from the test set were
used to test the classifier’s accuracy (averaged over all
the movements to calculate the overall classification accu-
racy). A Python v3.6 code was implemented to linearly
translate each class in a corresponding control command
of the 2 DoA of the SH2-P in a spatially and tempo-
rally continuous way. A linear function was implemented
to command the hand movement from one position to
another. When the hand is in an intermediate position
between two extreme postures of the space domain (e.g.
G2 and G3 of Fig. 5) the fingers reach an intermediate
position between the two extreme configurations. Such

Table 2 Amputee subjects demographics

Subj. 1 Subj. 2 Subj. 3

Age 31 55 26

Gender M M M

Side of amputation Left Right Right

Time since amp. (yrs) 4 39 8

Time since TMR (yrs) 1.5 NA 2

Home Device Myoel. Myoel. Body Pow.

PR Exp. Level High Low Low

kind of behaviour is highlighted in Fig. 4 where the fin-
gers move from one state to another in a continuous way,
but can also assume intermediate positions, as e.g. in
snapshots (d) and (e). The continuous gesture recognition
allows switching between different postures without the
need to reach an initial position and simultaneously com-
mands both actuation units. In the SH2- P this approach is
translated in a combination of the sum and/or difference
of the position of the two motors. Moreover, thanks to
the mechanical design of the SH2-P, a continuous switch-
ing control between pinch grasp and index point allows
in-hand manipulation, without the introduction of an
additional class.

Able-bodied subjects
A wearable mechanical interface was used to connect the
SH2-P to the human operator forearm. The experimental
setup is similar to the one used to test the SH-P in previous
work [28]. It consisted of a plastic shell with the pros-
thetic hand attached on the bottom part. The user forearm
was locked to the mechanical interface through two vel-
cro strips. The hand could be shifted along the interface
and was placed approximatively 3 cm distal to the opera-
tor’s hand. Each subject wore a cuff embedded with eight
surface EMG sensors. The cuff was positioned with the
reference electrode distal to the elbow on the posterior
side of the arm and adjusted to provide proper coverage
around the circumference of the forearm.
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Amputee subjects
As shown in Fig. 6b, one reference electrode and eight
pairs of stainless steel dome electrodes (1) were embedded
in a prosthetic gel liner (2). An example is showed in Fig.
6c. The subject then donned a customized socket (3) that,
with an interface compatible with an Otto-bock quick dis-
connect wrist (4), creating an easy interface with the hand
prototype (5). The whole experimental setup used was
fitted by a trained prosthetist. Figure 6d shows the exper-
imental socket worn by one subject during the session.
This setup is similar to the ones adopted in a previous
work [28], except for the number of electrodes used.

Experimental protocol
To evaluate the system performance, an experimental pro-
tocol was designed following the three steps presented in
this subsection. The first part consisted of the calibration
of the system, followed by a training session and then by
the experimental session (conducted with an open clinical
trial). The same protocol was used with able-bodied and
amputee subjects.

System calibration
The subject was seated in front of a screen and was asked
to mimic the movement prompted in the CAPS software.
The pre-programmed sequence of motions was showed
using a graphical user interface and was repeated three
times for each of the five movements collected. Each
movement was collected for 3 seconds, followed by three

seconds rest. To avoid fatigue, subjects were allowed 2
minutes of rest between trials. To increase the robustness
of the classifier [46] and limit the limb position effect [26],
subjects wore the bypass or the prosthetic device during
the data acquisition and they were asked to move their
arm in different positions while they were performing
each gesture. In this way, it was possible to consider sig-
nals changing due to different limb positions and to limit
eventual classification errors. After all the data were col-
lected, the pattern recognition classifier was automatically
trained from the software. The average classifier accuracy
was 95% for able-bodied subjects and 93.5% for amputee
subjects.

Training session
Since all the subjects were naive to the SH2-P, a train-
ing session was useful to explore the hand functionalities
and how to exploit the hand compliance and adaptabil-
ity, features that are not common in off-the-shelf devices.
On average, the training session was about 1 hour and 30
minutes. During this session, the subjects were guided to
learn each gesture and the combination of them. The first
part of the training was devoted to learning and becoming
familiar with the device capabilities. The tasks included in
this training session, designed with the help of an occupa-
tional therapist, were selected to optimize hand closure,
and to improve the precisionmanual dexterity and control
stability. The subjects were able to experience 1 DoA per
time, performing a simple generic task and an activity. The

Fig. 6 Panel a shows a schematic of the proposed control architecture. Myoelectric signals collected from 8 sEMG sensors were processed using
linear discriminant analysis (LDA) classifiers and grouped in 5 classes: no movement, hand open, power grasp, fine pinch and index point. These
classes were used to control the define grips of the SoftHand 2 Pro through the simultaneous activation of the 2 DoA. Panel b-d show the
experimental setup used by amputee subjects: b shows hardware components including 8 sEMG sensors (1), the customized liner (2) and socket (3),
a support interface compatible with the Ottobock quick disconnect wrist (4) and the SoftHand 2 Pro prototype (5); c presents an example of surface
electrodes distribution on an amputee subject; d shows the system worn by a user during the experimental session
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first handmotions practiced were power grasp/hand open
and then fine pinch/hand open. In both cases, the subjects
were asked to grasp a sequence of objects with different
shapes and weight (for example, a bottle, a toothbrush,
a credit card, etc), and build/demolish a cup pyramid of
2 cups base. An example of this task is showed in the
first and second row of Fig. 7. To practice the index point
movement, the subjects were asked to drag small objects
(i.e. wooden cube, coins) from one side to another of
the table and try to write a word using a computer key-
board (see the third row of Fig. 7). The following step
focused on the combination of three motions (power
grasp/hand open/index point), to get familiar with the
control method. This session was useful also to set the
activation threshold values for each class and each sub-
ject. At this point, more advanced tasks were proposed
to the subjects, such as turning a page of paper or turn-
ing cards upside down. In the example shown in the last
row of Fig. 7, the user experienced the advantages of the
continuous switching strategy to grasp a pen from a pen-
holder. The subject used the index point to move the pen
to a more convenient grasping position and then switched
directly to a full closure to grasp it. The training was
considered completed when the user was able to reach a
certain level of control capabilities, in order to avoid that

their level of experience with pattern recognition could
influence the results.

Experimental session
After training, the subjects performed two standard
assessments. During each test, the subjects were free to
choose the preferred gesture (or the combination of ges-
tures) to complete the task. Since the SH2-P was never
tested with amputee subjects, the first assessment used
for this validation was the Box and Blocks test (BBT) [47],
a test that is widely used to study the usability of pros-
thetic devices [48]. Subjects are instructed to move as
many wooden cube blocks as possible from one box to the
adjacent one in sixty seconds. The blocks are placed in a
random orientation on the first box, which adds variabil-
ity to each trial. During the test, the users were allowed to
move more than one block at a time, but it was counted
as one. To obtain a more consistent dataset, the subjects
performed three repetitions of sixty seconds, interspersed
with sixty seconds break. A sequence of the experiment
is shown in Fig. 8a. The hand functions for activities of
daily living were evaluated through a second assessment,
the Jebsen-Taylor Hand Function Test (JTT) [49]. This
test consists on 7 sub-tasks: writing a 24-letter sentence,
turning 5 cards, picking up small objects and placing it

Fig. 7 Examples of training activities. In the first row the amputee subject was building a cup pyramid using only power grasp, while in the
sequence showed in the second row a participant is using only the pinch grip. In the pictures presented in the third row the pre-shaping index
point is used to write a word on a computer, to increase precision and visibility while performing the task. Finally, in the last row the subject is
switching between index point and power grasp to picking a pen from a penholder
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Fig. 8 Amputee subjects testing the SoftHand 2 Pro performing the Box and Blocks a and the Jebsen-Taylor Test b. The photo sequence in a shows
an example of BBT performed by an amputee subject. The participant was using the continuous switching between classes to perform the test. The
pictures in b show different grasp strategies to complete the same task, possible thanks to features as the adaptability and dexterity of the SoftHand
2 Pro

in a box, stacking 4 checkers, a simulation of feeding and
moving first light and then heavy cans. A time-out was
considered at 120 sec for each task. An overview of the
JTT sub-tasks is presented in Fig. 8b. The maximum time
to complete each sub-task is 120 seconds, and the score is
given by the total time required to accomplish all the sub-
tasks. At the end of the functional test, the subjects were
asked to complete a questionnaire to evaluate the level
of satisfaction with the device, the control and switching
method, and the level of fatigue experienced during the
experiments. A 5-points Likert-like scale was used for this
evaluation, rating the level of agreement by a value from 1
to 5. The sentence were:

Q1. The hand was easy to control
Q2. I was able to grasp objects/perform the task very

easily
Q3. It was easy to reach the chosen closure
Q4. The switch between different closures was intuitive
Q5. I’m not tired at all

Results
To evaluate the extended design features of the SH2-P,
results are compared with the SH-P (using data extracted
from a previous study [28] and the same standard
assessments). Figure 9 presents results on able-bodied

subjects, while Fig. 10 shows the outcome on amputee
subjects. A two-sample t-test and a two-way analysis of
variance with ANOVA is conducted to evaluate the differ-
ences between the two groups of subjects (with and with-
out limb loss), the two hand devices (SH-P and SH2-P),
and the interaction between them. Statistical significance
for all tests was set at 0.05. Means are reported asmean ±
standard error.
To analyze the performance of the SH2-P and the

proposed control method with a more wide perspec-
tive, results are also compared with other studies from
literature, that use the same standard assessments to eval-
uate research prototypes and control strategies. Table 3
presents the average results for able-bodied subjects and
a comparison with the SH-P (using data extracted from
[28]), the Delft Cylinder Hand (using data extracted
from [50]) and the Ottobock Electric Hand (using data
extracted from [45]). Table 4 shows the average results for
amputee subject and a comparison with the SH-P (using
data extracted from [28]), the Hosmer 5XA body-powered
hook and the Motion Control Electric Device (using data
extracted from [51]), a Switch-Controlled hand and the
Ottobock 8E44 DMC Plus (using data extracted from
[53]), the Michelangelo Hand controlled with Direct Con-
trol and Pattern Recognition Control (using data extracted
from [52]).
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Fig. 9 Average results with the standard error on able bodied subjects performing standard assessment: a BBT and b JTT. The performance of the
SoftHand 2 Pro (in red) are compared with the SoftHand Pro (in striped red - data extracted from [28]). At the end of the protocol the subjects were
also asked to complete a questionnaire. Evaluation of the questionnaire statements (min 1, max 5) are reported in c; (Q1) The hand was easy to
control, (Q2) I was able to grasp objects/perform task very easily, (Q3) It was easy to reach the chosen closure, (Q4) The switch between different
closures was intuitive, (Q5) I’m not tired at all

Subject comparison using SoftHand 2 Pro
The average score of the BBT was 7.8 ±1.3 for able-
bodied subjects and 10.67±2.3 for amputee subjects, both
using the SH2-P. For the JTT, the total average score of
the test was 321.2 ±33.7 for able-bodied subjects and

290.75 ±33.7 for amputee subjects. The average results
for the amputee subjects are presented in Table 3, while
the results of the three amputee subjects for each test
are reported in Table 5. Two-sampled t-test indicated
that there is not sufficient evidence to reject the null

Fig. 10 Average results with the standard error on amputee subjects performing standard assessment: a BBT and b JTT. The performance of the
SoftHand 2 Pro (in blue) are compared with the SoftHand Pro (in striped blue - data extracted from [28]). An average of the score for each JTT
subtask is showed in c. At the end of the protocol the subjects were also asked to complete a questionnaire. Evaluation of the questionnaire
statements (min 1, max 5) are reported in d; (Q1) The hand was easy to control, (Q2) I was able to grasp objects/perform task very easily, (Q3) It was
easy to reach the chosen closure, (Q4) The switch between different closures was intuitive, (Q5) I’m not tired at all. Statistically significant
comparison (p <0.05) are denoted with a “*”
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Table 3 Average results for Able-Bodied Subjects using SH2-P and comparison with the SH-P (data from [28]), the Delft Cylinder Hand
(data from [50]), the Ottobock Electric Hand (data from [45])

Terminal Device Control BBT JTT Quest

SH2-P Myoelectric (8 sEMG sensors) 7. 8±1.3 321.2±33.7 4.58±0.5

SH-P [28] Myoelectric (2 sEMG sensors) 7.4±1.5 417.5±17.9 NA

Delft Cylinder Hand [50] Body-Powered Harness 17±6 / 26±8 � NA NA

Ottobock Electric Hand [45] Myoelectric (2 sEMG sensors) 25±3.5 / 28±4 �� NA NA

�data from 1st/15th trial
��data from slow/fast devices

hypothesis that the result of BBT and JTT for able-bodied
subjects and amputee subjects were significantly different
(p >0.05). The results of the questionnaire, presented in
Fig. 9c, show an overall satisfaction of able-bodied sub-
jects using the SH2-P and controlling different grips. A
moderate level of fatigue was experienced by subjects
at the end of the experiment (see Fig. 9c - Q5). These
results are also supported by the feedback obtained from
amputee subjects. Figure 10d shows the average score
given for each question. The subjects gave an average
score of 4.75 ±0.11 to Q1, Q2, Q3 and Q4. On average,
also the level of fatigue experienced by the subjects was
relatively low (3.3 ±0.6).

Devices comparison
For able-bodied subjects, the average result of the BBT
obtained with the SH2-P (7.8 ±1.3) is higher compared
to the one with SH-P (7.4 ±1.5), but no statistically sig-
nificant difference was found between the devices using
a two-way analysis of variance with ANOVA (p >0.05).
However, the outcome of the SH2-P is considerably lower
compared to the score of the Delft Cylinder Hand (26 ±8
after 15 trials) and the Ottobock Electric Hand (25 ±3.5
for the slow device, 28 ±4 for the fast device). For the
JTT, the results with the SH2-P (321.2 ±33.7) and the SH-
P (417.5 ±17.9) were statistically different (p <0.05) and

show about a 30% increase of the performance with the
novel design.
The average results for subjects with limb loss show

no significant difference between the SH2-P (10.67 ±2.3)
and the SH-P (9.6 ±1.4) for the BBT. The score of the
SH2-P is considerably lower compared to the results of
[51], which analyze the performance of a body-powered
Hosmer hook and a Motion Control Electric Device
(respectively 49 and 20), tested with a single subject with
transhumeral amputation. However, the SH2-P shows
higher score compared to [53], that presents the per-
formance of a switch-controlled hand (6) and the Otto-
bock DMC Plus (8 after 8 weeks training), and sim-
ilar to the one obtained with the Michelangelo Hand
[52] using direct control (8.7 ±5.5 after home trial)
and pattern recognition control (11 ±6.1 after home
trial).
The results of the JTT show about a 12% increase of

the performance for the SH2-P compare to the single
motor design (SH-P). As evident from the overview of the
JTT subtask presented in Fig. 10c, the results obtained
with the SH2-P overcome the one with SH-P especially in
tasks which require a higher level of precision. In particu-
lar, a two-sampled t-test indicated that there is statistical
difference (p <0.05 ) between the average score of the
SH2-P (85.76 ±10.5) and the SH-P (112.67 ±13.7) in

Table 4 Average results for Amputee Subjects using SH2-P, and comparison with the SH-P (data from [28]), the Hosmer 5XA
body-powered hook and the Motion Control Electric Device (data from [51]), the Switch-Controlled hand and the Ottobock 8E44 DMC
Plus (data from [53]), the Michelangelo Hand controlled with Direct Control and Pattern Recognition Control (data from [52])

Terminal Device Control Method BBT JTT

SH2-P Myoelectric Cont. PR (8 sEMG sensors) 10.67±2.3 290.75±33.7

SH-P [28] Myoelectric DC (2 sEMG sensors) 9.6±1.4 327.46±22.8

Hosmer 5XA Hook [51] Body-Powered Harness 49 NA

Motion Control Electric Device [51] Myoelectric DC (2 sEMG sensors) 20 NA

1 DoF Hand [53] Switch-Controlled (humeral abduction) 6 621

Ottobock 8E44 DMC Plus [53] Myoelectric DC (2 sEMG sensors) 2 / 8 � 769/567 �

Michelangelo Hand [52]
Myoelectric DC (2 sEMG sensors) 14.7±9/8.7±5.5 �� 362±135.1/331±52.1 ��
Myoelectric PR (6 sEMG sensors) 5.7±1.2/11±6.1 �� 346.3±77.7/332.3±69.3 ��

�Data before/after 8 weeks training with a single subject
��Data before/after home trial
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Table 5 Experimental Results of Amputee Subjects using SH2-P

Subject 1 Subject 2 Subject 3

Box and Blocks Test 13 13 6

JTT

Writing 35.69 22.25 51.04

Turn Cards 28.56 32.35 60

Picking Small Obj 120 70.03 67.25

Simulation Feeding 12.75 13.84 20.17

Stacking Checkers 53.13 48.38 82.1

Lift Light Can 14.12 16 28.44

Lift Heavy Can 15.41 16.75 64

Total 279.6 219.6 373

Questionaire 4.9 4.3 4.2

amputee subjects while performing the “grasp of small
objects” JTT subtask. However, the SH-P was in average
faster in the “lift of light/heavy cans” subtasks, but no
statistical evidence was found (p >0.05). The outcomes
of the SH2-P with the JJT are considerably better com-
pared to the results of both devices presented in [53] (621
with the switch-controlled hand, 567 with the Ottobock
DMC Plus) and significantly different compared to the
Michelangelo Hand [52], even after the home trial (331
±52.1 with DC, 332.3 ±69.3 with PR, p >0.05).

Discussion
The performance reached with the SH2-P in subjects
with and without limb loss are statistically comparable
and demonstrated that a simple and soft hand design in
combination with advanced pattern recognition could be
a viable solution to balance system simplicity and dex-
terity. The introduction of a novel control modality, and
especially with a limited training period, is undeniable
challenging. Initially, subjects had to train how to switch
directly between one muscle contraction to another but at
the end of the training session, they were exploiting the
advantages of this new strategy.
The results of the BBT show comparable performance

between able-bodied and amputee subjects. The BBT was
mostly used to evaluate the device usability more than
hand dexterity, as generally the same grasp is repeated
through the whole test. During both assessments, the sub-
jects were free to use one gesture or a combination of
them to complete the task, and the two groups of partic-
ipants adopted different strategies to complete the BBT.
While most of the able-bodied subjects completed the test
using the same hand movement (power grasp), amputee
subjects explored different configurations of the SH2-P
with the continuous switching control method. Figure 8a
shows an example. A subject used the index point con-
figuration to move a block in a more convenient grasping
position and then switched directly to power grip to grasp

it, without the need to stop in a hand opening state.
The wooden cube was then moved to the empty box and
released, switching again directly from power grasp back
to index point. These outcomes are also supported by the
results of the JTT, that was selected to validate the hand
functionality. All subjects successfully completed all the
subtasks and, in average, amputee subjects performed bet-
ter than able-bodied subjects. As presented in Fig. 8b,
different grasping strategies were explored by participants
and used to complete the JTT subtasks. Finally, the results
of the questionnaire show very positive feedback from the
users. They reported that they appreciated the adaptabil-
ity to the object shape and the robustness of the device.
Amputee subjects also noted features such as the device
adaptability and dexterity, and they found the introduc-
tion of a continuous switching strategy to the conventional
classifier promising. However, all the participants experi-
enced a moderate level of fatigue during the experimental
validation.
Moreover, the advanced dexterity of the SH2-P allows

satisfactory performance also compared to the original
design (SH-P). In the BBT, the average performance of the
SH2-P are higher, but not statistically different from the
one achieved with the 1 DoA design. This result is not
surprising, since no need for switching DOF is required
to complete this test. In the JTT, the advanced dexter-
ity of the SH2-P allows to overcome the performance
reached by amputee subjects using the SH-P. In particu-
lar, it is interesting to see how the extended capabilities
of the SH2-P allow to get significantly better performance
in tasks which requires more precision, as “grasp small
objects” or “stacking checkers”, but worse performance in
tasks as “lift of light/heavy cans”. The latter result could be
a consequence of muscle fatigue or misclassified gesture
predictions, and it is mostly influenced by the perfor-
mance of subject 3 (as showed in Table 5). Generally,
subjects 1 and 2 performed better than subject 3. This may
be partially explained by the fact that the subject is a body-
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powered user while the other two aremyoelectric users. In
general, the results were satisfactory enough to consider
the system promising for future investigations, especially
taking into account the limited training (less than 2 hours)
and that the subjects were naive to the device and the con-
trol strategy. Indeed, it is also important to see that this
work presents a first result of the SH2-P used by amputees
and its evaluation through standardized assessment for
prosthetic devices.
The analysis of the SH2-P in comparison with other

studies from literature could give an additional interesting
perspective. As presented in Tables 3 and 4, the outcomes
of the SH2-P in the BBT are considerably lower com-
pared to theHosmerHook [51] or the Delft CylinderHand
[50], that allow higher grasping accuracy and propriocep-
tion thanks to the body-powered control. However, the
BBT score obtained with the SH2-P and the continuous
switching method is comparable to the outcomes found
in other studies that use myoelectric control and state-of-
the-art terminal devices with different levels of dexterity.
While the BBT analyzes the device usability through a
repeated action, the results of the JTT helps to highlight
the function of the terminal device and control method for
activities of daily living, that requires advanced dexterity.
In this case, the proposed device and control method show
a higher score compared to state-of-the-art myoelectri-
cal controlled devices. In particular, the performance of
the SH2-P are significantly different compare to the one
of the Michelangelo Hand controlled using a conventional
pattern recognition classifier, and this results could be
possibly influenced by the use of the continuous switch-
ing method. Generally, the results on the SH2-P and the
continuous switching method look promising for future
extended investigations, even considering that the other
studies used as a benchmark included longer training,
several sessions or home trials.
Despite valuable approaches that have been developed

to investigate the possibility to combine the concept of

postural synergies with different mapping strategies [26,
29], the proposed work evolves state-of-the-art in the use
of a pattern recognition classifier as a method to extract
intended commands. Moreover, the method is applied to
a hand that physically implements multiple synergies, and
does not reproduce them through the control of multi-
ple motors connected to individual fingers. The use of
prosthetic systems in real-world scenarios, which may
experience harsh and irregular physical interactions with
the environment, demands hardware which is physically
resilient. The introduction of the augmented adaptive
synergies directly in the mechatronics of the device has
the potential to keep the robustness and device reliabil-
ity experienced with the SH-P in a prototype which can
perform an advanced level of dexterity but still main-
taining the control intuitive and natural. This is visible
in the example of Fig. 11 where, during the training ses-
sion, the same task was performed with different gestures.
In the photo sequence (a-d) the user was turning a card
intentionally using only power grasp (as the SH-P can per-
form), while in the sequence (e-h) they were using the
combination of all the hand gestures of the SH2-P. From
this example, it is visible how, despite that the user can
accomplish the task also using only a power grasp, with
all the gesture and exploiting the continuous switching
control the sequence is more natural. Please refer also
to the video attachment for more details and examples
of use.
The main limitation of this study is the lack of compar-

ison of the continuous switching control method tested
with other state-of-the-art advanced myoelectric pros-
theses and the same group of participants. While the
comparison with the SH-P and other studies from litera-
ture helps to analyze the advantages and weakness of the
proposed system, this study doesn’t show the performance
of the continuous switching control method with other
prosthetic devices. These aspects will be considered and
evaluated in future investigations. Despite a small group

Fig. 11 Amputee subject performing the “turn a card task” during different steps of the training session. In photo-sequence a-d the participant is
intentionally using only power grasp, while e-h shows the result of combining index point and pinch grasp thanks to the continuous switching
strategy. In the second case, the execution sequence is more natural
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of subjects that were involved in this study, the encourag-
ing results allow us to confidently affirm that the method
is certainly feasible and appreciated by the users. Future
extensions of this works will include a larger group of
participants and an advanced protocol, to examine the
learning of subjects over multiple sessions and generalize
our results.

Conclusion
This paper explores the usability of amulti-synergistic soft
prosthetic hand, the SoftHand 2 Pro, controlled using a
pattern recognition classifier algorithmwhich implements
a continuous switching control method. The combined
system was validated using standard assessment in sub-
jects with and without limb loss. Results show the poten-
tial of this approach also in comparison with the SoftHand
Pro, which shares the same soft robotic technologies but
implements only one single physical postural synergy.
Indeed, if compared to the SoftHand Pro, the SoftHand
2 Pro shows improved fine grasp capabilities and better
time performance, together with a useful set of different
in-hand manipulation capabilities and gestures (e.g. index
pointing). Moreover, the combination of state-of-the-art
advanced controls with mechanical design simplifications
demonstrated to be a promising approach to obtain a
balance between control intuitiveness and device reliabil-
ity, despite the presence of various novel manipulation
skills. Finally, the proposed device and control method
could show other benefits, as a possible reduction of com-
pensatory motions. This more extensive evaluation will
be part of future works, along with a higher number of
participants.
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