
Local Monitor Implementation for
Decentralized Intrusion Detection in Secure Multi–Agent Systems

Adriano Fagiolini, Gianni Valenti, Lucia Pallottino, Gianluca Dini, and Antonio Bicchi

Abstract— This paper focuses on the detection of misbehav-
ing agents within a group of mobile robots. A novel approach
to automatically synthesize a decentralized Intrusion Detection
System (IDS) as well as an efficient implementation of local
monitors are presented. In our scenario, agents perform possi-
bly different independent tasks, but cooperate to guarantee the
entire system’s safety. Indeed, agents plan their next actions by
following a set of logic rules which is shared among them. Such
rules are decentralized, i.e. they depend only on configurations
of neighboring agents. However, some agents may not be acting
according to this cooperation protocol, due to spontaneous
failure or tampering. To detect such misbehaviors, we propose
a solution where each agent runs a local monitor that uses
only locally available information. In this paper, we present
an implementation of such monitors by which events occurred
to a target–agent can be estimated forany combination of
neighborhood and observable space. Validity of the proposed
implementation is shown through simulation.

I. I NTRODUCTION

In the literature on robotics and control, multi–agent
systems have recently received much attention, partially due
to the ease with which solutions to many problems can be
found in terms of a number of interacting agents. In this set-
ting, we consider systems where agents cooperate through
exploitation of a shared setR of logic rules, according
to which they are supposed to plan their actions. In these
cooperative systems, agents can often be modeled as hybrid
systems, whose discrete states represent actions decided by
on–board supervisors, and whose logical guards, triggering
transitions among states, depend on the configuration of
other agents.

We particularly focus on decentralized rules or strategies
for autonomous vehicles that decide on their motion based
only on the configurations and velocities of neighboring ve-
hicles, and where the main safety concern is collision avoid-
ance. Several collision avoidance strategies for multi–agent
systems have been proposed in the literature with different

A. Fagiolini, G. Valenti, L. Pallottino and A. Bicchi are with
the Interdepartmental Research Center “E. Piaggio”, Faculty
of Engineering, University of Pisa, Italy,{a.fagiolini,
l.pallottino, bicchi}@ing.unipi.it,
posta@gianni.valenti.name.

G. Dini is with the Dipartimento dell’Informazione, Faculty of Engineer-
ing, University of Pisa, Italy,gianluca.dini@ing.unipi.it.

application domains and different sets of decentralized rules
(see e.g. [1]–[3]).

While in the literature the benefits of decentralized traffic
management protocols are often underscored, few authors
have recently highlighted the threats posed by so–called
“intelligent collisions” [4]. As a matter of fact, whenever
one or more agents fails to follow the common set of
rules, due to e.g. spontaneous failure, tampering, or even to
malicious behaviors [5], the system’s safety is under risk.

In the literature on security, the introduction of an Intru-
sion Detection System (IDS) is often advised as a means
to protect networked systems against misbehaviors that are
allowed to act from within the system. The goal of an
IDS for decentralized cooperative multi–agent policies is
to automatically detect possible misbehaviors, using only
the information locally available to each agent, along with
the knowledge of the cooperation rulesR.

The construction of such an IDS can build upon a rich
literature on the detection of failures in Discrete Event
Systems (DES), even in the presence of partial observations
[6]–[8], and upon the more recent literature on hybrid
systems [9]–[12] However, in the literature related to fault
detection for DES, failure is typically modeled as a state.
Hence, reachability techniques can be used to detect the
failure or the diagnosability of the system. In our setting,
failures correspond to agents arbitrarily misbehaving. The
goal of an agent acting as a decentralized IDS is to
distinguish a faulty or malicious agent in its neighborhood
from a correctly cooperating agent whose actions may be
influenced by other agents out of the monitor’s range.
Furthermore, the fact that the topology of interaction and
exchange of information among mobile agents is changing
and unknown, should be taken into account. These reasons
make the problem we deal with quite distinct from those
tackled in the current DES and hybrid systems literature,
and indeed very challenging.

In [13] we propose a decentralized IDS, where each
agent runs a local monitor that uses only locally available
information. The solution is independent of the agent’s
dynamics, and of the setR of logic rules. In this paper,
we present an implementation of such monitors by which
events occurred to a target–agent can be estimated forany

combination of neighborhood and observable space.

II. D ECENTRALIZED LOGIC COOPERATION POLICIES

PRODUCING HYBRID SYSTEMS

Consider a system ofn mobile agents that plan their
actions, e.g. decide on their motions, according to a decen-
tralized cooperative policy defined through a setR of logic
rules.

Denote by vectorqi thei–th agent’s physical state, taking
value on a suitable configuration spaceQ, and denote by
fi its continuous–time dynamics. Assume that eachfi is
steered by an on–board low–level feedback controllergi.
Hence, the evolution of vectorq = (q1, q2, . . . , qn), repre-
senting the system’s state, is determined by the following
set of differential equations:

{

q̇i = fi(qi, ui) ,

ui = gi(qi, σi) ,
for i = 1, 2, . . . , n ,

whereui ∈ Ui are control inputs, andσi are symbols repre-
senting logical commands, such as e.g. motion maneuvers,
specified by higher–level local supervisorsSi.

In our framework, all agents have the same dynamics, i.e.
fi = f for all i. Furthermore, each agent may be assigned
with a different kind of task and, therefore, may interact
according to a different rule setRi. However, we focus on
collaborative systems where every agent cooperates sharing
the relevant subset of rules, and we letR = ∩iRi for all i.
Hence, we can assumegi = g, andUi = U for all i.

The shared setR of cooperation rules defines the setΣ =
{σ1, σ2, . . . , σκ} of all possible actions that can be executed
by the agents, and the setEi = {e1

i , e
2
i , . . . , e

ν
i } of ν logic

conditions, or events, on the system stateq, requiring thei–
th local supervisor,Si, to update its stateσi from actionσh

to actionσk. Local supervisorsSi are systems composed of
an event detectorEi, that checks for event activation based
on the system stateq, and a finite state machine (automaton)
Ai, whose stateσi represents the agent’s current action
σi, and is updated according to events measured byEi.
More precisely, automatonAi is defined by the4–tuple
(Σ, Ei, Γ, δ), whereΓ(σi) is the set of events represented
by edges originating from nodeσi, andδ : Σ× Ei → Σ is
the discrete state transition function. Therefore, the logical
evolutionσ(k) = (σ1(k), σ2(k), . . . , σn(k)) of the system
is driven by the following recursive equations:
{

σi(tk) = δ(σi(tk−1), ei(tk)) ,

ei(k) = Ei(q(tk)) ,
for i = 1, 2, . . . , n .

Introduction of logic rules to achieve cooperation among
physical systems quite naturally produces hybrid systems.
Indeed, as it can be seen in Fig. 1, each agenti is formed
of a time–driven physical layer, containing the agent’s

Fig. 1. Illustration of agent’s hybrid architecture.

dynamicsfi and the low–level controllergi, and an event–
driven logical layer, containing the event–detectorEi and
the automatonAi. Its complete state is then given by the
pair (qi(t), σi(k)), and its model is formally defined as

Hi = {fi(·), gi(·),Ai, Ei(·)} ,

wherefi : Qi×Ui → Qi, gi : Qi×Σ → Ui, Ei : Qn → Ei,
andEi = {true, false}ν .

A decentralized policy is one such that decisions of local
supervisors are independent ofany global system informa-
tion, as e.g. the numbern of agents. In this perspective we
define an active configuration spaceQi

a, for each agent, as
the space of all configurations that may affect its behavior.
Formally, we have:

Qi
a = {q ∈ Q |R(qi, q)} ,

whereR is a Boolean function that ensues fromR. Fur-
thermore, letNi(t) be the time–varying set representing
the i–th agent’s actual neighborhood, being the set formed
by the indices of the agents actually affecting the decision
making process at the current timet. Formally we have:

Ni = {j ∈ J | qj ∈ Qi
a} ,

whereJ = {1, 2, · · · , n} is the index set of all agents in
the system. Examples of neighborhoodNi are given by
the set of agents lying within a fixed distance, or in line
of sight from agenti. Also, let ni = card(Ni) be the
number of agents cooperating with thei–th agent, and the
neighborhood state is given byNi = {qj ∈ Q | j ∈ Ni}.
Then we say that local supervisors are decentralized if the
propertySi (σi(tk−1), q(tk)) = Si (σi(tk−1),Ni(tk)) holds
for all i.

III. E VENT DECOMPOSITION AND ACTION PLANNING

In this section we construct a representation of the
events of a given policy that can be used by an agent
for planning its motion and by a local monitor to estimate
events occurred in the neighborhood of a target–agent. The
representation is able to cope with arbitrary neighborhood
and observable region.

For a given cooperation policy, it is not restrictive to
require the existence of a set of Boolean functions,lk,
for k = 1, . . . , nl, by using which the policy itself can
be written. Such functions are called literals and define

unary operationslk : Q → B, or binary operationslk :
Q2 → B, where isB = {true, false}. Each literallk is
naturally assigned with the subset1(lk) of Qi

a composed
of configurations satisfyinglk. E.g., for a binary literal, we
have:

1(lk) = {qi, qj ∈ Qi
a | lk(qi, qj) = true} .

Moreover, literals are combined together in order to describe
all policy’s events. Indeed, eventei is a logic statement that
can be written in disjunctive normal form (DNF), i.e. as a
disjunction (sequence ofor) of one or more sub–eventsei,h

that, in turn, can be written as conjunction (and) of one or
more sub–expressionsei,h,k. In formula we have:

ei =
∨

h

ei,h =
∨

h

(

∧

k

ei,h,k

)

. (1)

Furthermore, to be able to write any logic statement, it is
sufficient to consider sub–expressionsei,h,k having one of
the following forms:

(∃ qj ∈ Qa
i | lk(qi, qj)) (existence) , (2)

(∄ qj ∈ Qa
i | lk(qi, qj)) (non–existence) , (3)

(lk(qi) , qi ∈ Qa) (simple positive) , (4)

(¬lk(qi) , qi ∈ Qa) (simple negative) . (5)

Local supervisorSi can readily plan its current action
σi based on the events’ activation. Indeed, each supervisor
has complete knowledge of its neighborhoodNi, and it
can estimate such event activations according to a bottom-
up strategy, from sub–expressions to events. In particular,
an existence sub–expression, Eq. 2, can be computed by
evaluating the literallk for any configuration pair(qi, qj),
where isqj ∈ Ni, and then combining the results in dis-
junction (or operation). To compute a non–existence sub–
expression, Eq. 3, the results are combined in disjunction
and then negated (nor operation), whereas computation of
simple sub–expressions, Eq. 4 and 5, require only evaluation
of the literal lk for qi (and possibly a negation). After that,
sub–events are computed as conjunction (and) of the sub–
expressions, and finally events are computed as disjunction
(or) of the sub–events.

This procedure is valid forany neighborhoodNi. The
sequence of steps to evaluate an eventeh→k

i in the form
of Eq. 1 can be encoded into a data structureDi similar to
the tree–representation of Fig. 2, where the root represents
the event itself, first–level nodes are sub–events, and leaves
are sub–expressions. In particular, leaves contain a pair
(lk, operator), where lk is a reference (function pointer)
to a literal, andoperator ∈ {or, nor, ⊘} is the type of
logic operation to be applied to the literal’s results.

∧

∨

.

.

.

· · ·∧

.

.

.

∧

.

.

.

e
h→k
i

e
h→k
i,1 e

h→k
i,2 e

h→k
i,N

(l2,nor)

(l1, or)

(ln,nor)

(lm,nor)(l1, or)

(l3)

Fig. 2. A tree–representation of the proposed bottom-up strategy to
evaluate eventeh→k

i under both complete and partial knowledge. The
event is decomposed into literals by which term the policy isdefined.

IV. M ISBEHAVIOR DETECTION UNDER LOCALLY

INCOMPLETE KNOWLEDGE

We define anintruder, or misbehavior, as an agent
that is not cooperating in the system according to the
specified logic rule setR. Our aim is to realize an IDS
for detection of uncooperative trajectories among allqi(t)
for i = 1, 2, . . . , n. Consider how local monitorh can
establish whether a neighboring agenti is a misbehavior,
only through partial knowledge of its neighborhoodNi.

Denote byQh
o the observable configuration space from

monitorh, and withQh
u the unobservable complementary

portion. Clearly, we haveQ = Qh
o ∪ Qh

u. Existence
of Qh

u may be due to sensing range, or the presence
of masking agents or obstacles. Furthermore, define the
observable agent set,Oh, as follows:

Oh = {j ∈ J | qj ∈ Qh
o} .

Then, the portion of agenti’s neighborhood that is known
to monitor h is given by Ni

h = Ni ∩ Oh. We can also
define the estimated neighborhood,N̂h

i , as

N̂h
i = {j ∈ J | qj ∈ Qh

o} ∪ {k ∈ J̃ | qk ∈ Qh
u} ,

where J̃ is the index set of unknown agents that must be
presumed to explain agenti’s behavior. Observe that the
minimum number of agents for̂Nh

i is always used, and
that the following relation must hold:

0 ≤ N̂h
i − card(Oh ∩ Ni) ≤ Ψ(Qi

a ∩ Qh
u) , (6)

whereΨ : Q → Z returns the maximum number of agents
that can physically lay in the given configuration space.

An essential step of our method is estimating event
eh→k

i ’s activation by using only locally available informa-
tion. In a second paper, we show how this can be achived
for a fixed neighborhoodN̂h

i and observable spaceOh.
However, for efficiency reasons, we need an implementation
that is able to cope withany combination ofN̂h

i and Oh.

TABLE I

TRUTH TABLE OF or AND and IN EXTENDED BOOLEAN ALGEBRA.

l1 l2 l1 ∧ l2 l1 ∨ l2

true true true true
true false false true
true uncertain uncertain true
false false false false
false uncertain false uncertain

uncertain uncertain uncertain uncertain

We show how this can be obtained by exploitation of the
event tree–representation of Fig. 2.

Occurred events can be estimated again according to
a bottom-up strategy. Suppose e.g.N̂ h

i = {qi, qj , qk} is
monitor h’s estimation ofNi, with qi, qj ∈ Qh

o and
qk ∈ Qh

u. For our purpose, it is necessary to allow
literals to take value on the extended Boolean setB∗ =
{true, false, uncertain}.

Evaluation of an existence sub–expression, Eq. 2, is in
practice obtained through computation of the explicit form:

lk(qi, qj) ∨ lk(qi, qk) ,

where lk(qi, qj) is known, whilst lk(qi, qk) is unknown.
Therefore, the sub–expression is certainlytrue, if its former
term is true, since it is combined to the latter with anor
operation. In the other case, the sub–expression value equals
that of the latter term, and it is thenuncertain. Opposite
reasoning can be done for a non–existence sub–expression,
Eq. 3, which in this case can be expanded as:

¬ (lk(qi, qj) ∨ lk(qi, qk)) = ¬ lk(qi, qj) ∧ ¬ lk(qi, qk) .

Simple sub–expressions, Eq. 4 and 5, are always known
since they depend only onqi, which is measurable to
monitorh from hypothesis. Sub–events and events are then
estimated through the same approach.

Therefore, monitorh can use the above introduced data
structureDi (see e.g. the tree–representation of Fig. 2),
for all known pairs (qi, qj), and then take into account
for incomplete knowledge as it has been shown here. The
pseudo–code of this estimation is reported in Algorithm 1.
Truth–table of logic operations on literalsl1 and l2, in the
extended Boolean algebra, are reported in Table I.

Finally, it is worth noting that the so–obtained predic-
tion êh→k

i reduces to a singleton set, coinciding with the
evaluation of the deterministic supervisorSi, if Ni ⊆ Qh

o.
By means of this, each monitor can verify the behav-

ior of all its neighbors. The verification output is in the
set {correct, faulty}. More precisely, the process returns
correct if the estimated sequence of̂ni is feasible, and
always allows to explain agenti’s behavior. Otherwise,
faulty is returned.

Algorithm 1 Estimation of activated eventŝei, and
prediction of next actionŝσi by local monitorh.

Require: Di, lk (for k = 1, 2, . . . , nl), Ai, σi

Ensure: êi, σ̂
+

i

1: [Oh,Qh
o] = DetectAgents()

2: N̂h
i = EstimateNeighbors(Oh)

3: for all ei do
4: for all ei,m do
5: for all ei,m,s do
6: [ls, opes] = Di(ei,m,s)
7: if ope = ⊘ then
8: ēi,m(s) = ls(qi)
9: else

10: for all qj ∈ Ni do
11: l̄s(j) = ls(qi, qj)
12: end for
13: ēi,m(s) = extended − combine(opes, l̄s)
14: end if
15: end for
16: ēi(m) = extended − combine(and, ēi,m)
17: end for
18: ê(i) = extended − combine(or, ēi)
19: end for
20: σ̂+

i = Ai(σi, ê)

V. CASE STUDY – AN AUTOMATED HIGHWAY

Considern vehicles in an automated highway starting
at different positions, and moving toward different goals.
Vehicles are allowed to travel with different maximum
velocitiesV max

i , and have to cooperate according to a set
R of driving rules so as to avoid collisions. Our task is to
detect misbehaving vehicles.

Denote by vectorsqi = (xi, yi, θi, vi), for i = 1, 2, . . . , n,
the vehicles’ states (see Fig. 3), and assume that vehicles
have the following unicycle–like dynamicsfi:















ẋi = vi cos θi ,

ẏi = vi sin θi ,

θ̇i = ωi ,

v̇i = ai ,

for i = 1, 2, . . . , n ,

where ai and ωi are linear and angular velocities,
respectively.

Local supervisors,Si, for all i, are modeled according
to the setR of driving rules, and are represented by the
automaton of Fig. 4. In particular, each vehicle is allowed
to perform at any time one of the following maneuvers:
fast (F), left (L), right (R), and slow (S). Choice of
current maneuver is determined by activation of the events
reported in Table II. Such events are decomposed as in Eq. 1
into combinations of literals, which are listed in Table III.

qi = {xi, yi, θi, vi}

θi

vi

i

xi

yi ⌊yi⌋ = 0

⌊yi⌋ = 1

Fig. 3. A 2–lane automated highway with a set of common individual
driving rules.

ω =

{
Ω if θ < θMAX

0 otherwise

a =

{
A if v < VMAX

0 otherwise

L

ω = −(y − yf)

sin(θ)

θ
v − k v θ

a =

{
A if v < VMAX

0 otherwise

F

ω =

{
−Ω if θ > −θMAX

0 otherwise

a =

{
A if v < VMAX

0 otherwise

R

ω = −(y − yf)

sin(θ)

θ
v − k v θ

a =

{
−A if v < VMAX

0 otherwise

S

e
F→L

i e
F→R

i

e
L→F

i
e
R→F

i

e
F→S

ie
S→F

i

e
S→L

i

Fig. 4. Illustration of supervisory automatonSi with specification of the
continuous control law(ai, ωi) applied during each actionσi.

TABLE II

L IST OF EVENTS FOR VEHICLES MOVING ALONG A2–LANE HIGHWAY

eF→L
i = (∃ j ∈ Ni | l1(qi, qj)) ∧

∧ (∄k 6= j ∈ Ni | l2(qi, qk)) ∧
∧ ¬ l4(qi)

eF→S
i = eF→S

i,1 ∨ eF→S
i,2

eF→S
i,1 = (∃ j ∈ Ni | l1(qi, qj)) ∧ (∃ k 6= j ∈ Ni | l2(qi, qk))

eF→S
i,2 = (∃ j ∈ Ni | l1(qi, qj)) ∧ l4(qi)

eF→R
i = (∄j ∈ Ni | l5(qi, qj) ∧ ¬ l3(qi)

eL→F
i = l4(qi)

eR→F
i = l3(qi)

eS→L
i = eF→L

i

eS→F
i = (∄j ∈ Ni | l1(qi, qj))

Observe thatxj and lj are short–hands forxij
and lij

,
being relating to thej–th neighbor of vehiclei. Low–
level controllers,gi, for all i, are continuous feedback laws
(see again Fig. 4) ensuring that current commandsσi are
performed.

VI. SIMULATION

Validity of the proposed scheme and implementation can
be shown through simulation. A simulation of a 2–lane
traffic run is reported to show the operating steps of our

TABLE III

L IST OF LITERALS FOR VEHICLES MOVING ALONG A2–LANE HIGHWAY

l1(qi, qj) = (xj − xi ≤ d) ∧ (xj ≥ xi) ∧ (⌊yj⌋ = ⌊yi⌋)
l2(qi, qj) = (|xj − xi| ≤ d) ∧ (⌊yj⌋ > ⌊yi⌋)
l3(qi) = ⌊yi⌋ = 1
l4(qi) = ⌊yi⌋ = 2
l5(qi, qj) = (|xj − xi| ≤ d) ∧ (⌊yi⌋ > ⌊yi⌋)

method. See Fig. 5 and 6 for important snapshots and
signals, respectively.

The simulation starts with monitorh approaching to
vehicle 1 which is currently performing afast maneuver
(σi = F). Vehicle h’s view of the configuration space is
depicted in Fig. 5-a. This allows to say that the number of
agents inNi must be in the following range :ni ∈ {0, 1}.
Therefore, the estimated numbern̂i is initialized with 0
since monitorh sees no other vehicle than1. Under such a
hypothesis, the predictor automaton of Sec. IV only admits
the maneuver set̂σi = {F} (see Fig. 5-b). Hence the
behavior of agenti can be explained, and the verification
output isbi = correct.

Assume now that agenti changes to aleft maneuver
(σi = L) as in Fig. 5-c. Sincêni = 0 does not provide for
this behavior, the estimated number of interacting agents is
increased (̂ni = 1). By doing so, the predictor automaton
Pi admits the maneuver set̂σi = {F, L} depicted in Fig.
5-d. Again, the behavior of agenti can be explained, and
the verification output isbi = correct.

When agenti reaches the second lane (l1 = 2), it switches
to maneuverfast (σi = F). The configuration space is
partitioned w.r.t. monitorh as in Fig. 5-e. The numberni

has then to remain within set{0, 1} according to inequality
6. We first withn̂i = 0. At the same time, the event saying
that the right lane of vehicle1 is free is detected. Under
this circumstance and witĥni = 0, the predicted maneuver
set isσ̂i = {R}, whereas the observed behavior isσi = F .
Hence, the verification outputbi becomes uncertain. We
then try with n̂i = 1. Yet, the predicted maneuver set is
σ̂i = {R}, as depicted in Fig. 5-f, but vehicle1’s behavior
is still not predicted. At this step, local monitorh detects
that there exist no other valid value forn̂i, and then vehicle
1’s behavior is necessarily uncooperative. The verification
output is afterward set tobi = faulty.

In Fig. 7, some relevant snapshots from a sim-
ulated 3–lane traffic, where vehicle0 acts as lo-
cal monitor, are shown. The reader may refer to the
site http://www.piaggio.ccii.unipi.it/̃fagiolini/case2007 for
some relevant videos.

h 1 ?

Qo

h

Qu

h

1

1h 1
? Qu

h

(a) (d)

1h 1 Qu

h h

1 ? Qu

h

(b) (e)

h
1

? Qu

h

1

h

1 ? Qu

h

(c) (f)

Fig. 5. Snapshots from a simulated 2–lane traffic run. Possible predicted
evolutions of the observed agent are represented as faded vehicles.

k

k

k

k

F

S

L

R

F

S

L

R

3

2

1

0

c

f

bi

n̂i

σ̂i

σi

Fig. 6. Signals taken from a 2–lane highway simulation. Measured
maneuverσi and predicted onêσi are reported along with estimated
numbern̂i of agents interacting withi, and verification outputbi.

VII. C ONCLUSION

In this paper we addressed the problem of detecting
misbehaving agents within a group of mobile robots. We
presented a possible implementation for the local monitors
of a decentralized IDS that can estimate event activation
for any combination of neighborhood and observable space.
Future work will explore the advantages of communication
flow between all local monitors.

VIII. A CKNOWLEDGMENTS

The work was done with partial support from EC Net-
work of Excellence HYCON (Contract IST-2004-511368).

REFERENCES

[1] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air
traffic management: A case study in multi-agent hybrid systems,”
vol. 43, pp. 509–521, 1998.

[2] R. Ghosh and C. J. Tomlin, “Maneuver design for multiple aircraft
conflict resolution,” Chicago, IL, 2000.

[3] L. Pallottino, V. Scordio, E. Frazzoli, and A. Bicchi, “Probabilistic
verification of a decentralized policy for conflict resolution in multi-
agent systems,”IEEE International Conference on Robotics and
Automation, pp. 2448–2453, 2006.

[4] J. Blum and A. Eskandarian, “The threat of intelligent collisions,”
IT Professional, vol. 6, no. 1, pp. 24–29, Jan.-Feb. 2004.

(a)

(b)

Fig. 7. Snapshots from a simulated 3–lane traffic run. Vehicle 0 acts
as local monitor of the supervisor of vehicle4 in (a) and of vehicle3 in
(b). Gray color is used to represent unobservable space for the monitor.
Regions with plus and minus signs represent unobservable space where,
according to the observations, a vehicle is expected, or is not expected to
be, respectively.

[5] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Gener-
als Problem,”ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[6] T. Yoo and S. Lafortune, “Polynomial-time verification of diag-
nosability of partially observed discrete-event systems,” Automatic
Control, IEEE Transactions on, vol. 47, no. 9, pp. 1491–1495, 2002.

[7] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Failure diagnosis using discrete-event models,” Con-
trol Systems Technology, IEEE Transactions on, vol. 4, no. 2, pp.
105–124, 1996.

[8] R. Boel and J. van Schuppen, “Decentralized failure diagnosis
for discrete-event systems with costly communication between
diagnosers,” Discrete Event Systems, 2002. Proceedings. Sixth
International Workshop on, pp. 175–181, 2002.

[9] G. Fourlas, K. Kyriakopoulos, and N. Krikelis, “Diagnosability of
Hybrid Systems,” Proceedings of the 10th IEEE Mediterranean
Conference on Control and Automation, 2002.

[10] A. Balluchi, L. Benvenuti, M. Di Benedetto, and A. Sangiovanni-
Vincentelli, “Design of observers for hybrid systems,”Hybrid
Systems: Computation and Control, vol. 2289, pp. 76–89, 2002.

[11] S. Narasimhan, F. Zhao, G. Biswas, and E. Hung, “Fault isolation
in hybrid systems combining model based diagnosis and signal
processing,” Proc. of IFAC 4th Symposium on Fault Detection,
Supervision, and Safety for Technical Processes, 2000.

[12] G. Fourlas, K. Kyriakopoulos, and N. Krikelis, “A Framework for
Fault Detection of Hybrid Systems,”Proceedings of the 9th IEEE
Mediterranean Conference on Control and Automation, 2001.

[13] A. Fagiolini, G. Valenti, L. Pallottino, G. Dini, and A.Bicchi,
“Decentralized Intrusion Detection For Secure Cooperative Multi–
Agent Systems,”IEEE International Conference on Decision and
Control, 2007, submitted.

