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Abstract

In this paper the design of sensing systems for the measurement of mul-
tiple physical quantities related to a dynamical system is considered. A
multivariate sensor comprises several simple transducers, each measuring a
scalar quantity that comes from the combination of the components of the
quantity to be measured. From the collection of measurements of single
transducers at different times, the desired information is extracted by ana-
log or digital processing. Besides the choice of technological characteristics
of the transducers to be employed, the designer of multivariate sensors is
usually allowed some freedom in choosing the number of transducers, their
arrangement in the system, and the time scheduling of their measurements.
These choices are the subject of optimal policies in the design phase, whose
goal is to maximize some performance (or minimize some cost) criterion.
We survey some of the existing approaches to optimal design of multivari-
ate sensors, according to the different types of systems they are applied to.
Two examples of optimal sensor design are discussed as an illustration of
the methods.
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1 Introduction

Complex sensing systems are increasingly being employed in sophisticated
systems to handle a large variety of data from the system and extracting the
desired pieces of information. Applications range from large-scale process
control systems to biomedical monitoring devices, and to robotics, to name
a few. In general, the quantities of interest are embedded in a dynamic
relationship, and basic transducers are available whose scalar measurements
come from the combination of some or all of the components to be measured.
The sensing system comprises the collection of such basic transducers, and
of the processing means for extracting from their data the information that
is ultimately desired. Accordingly, the task of the designer of a multivariate
sensor is twofold: on one side, there is the choice of the technological real-
ization of basic transducers; on the other, the organization of transducers in
a system involving decisions about their number, location, scheduling, etc.
Both aspects aim at the same goal of maximizing sensitivity and minimiz-
ing errors. To a large extent, however, the technological and methodological
aspects of the design process can be separately analyzed. This paper is
focussed on the latter problem.

This paper consists of a tutorially-oriented survey of problems and meth-
ods that may occur to scientists involved in the design of multivariate sen-
sory systems, and hinges upon the point that optimal design of sensors for a
large variety of applications (state estimation for continuous or discrete-time
systems, lumped or distributed parameter systems, calibration, parameter
identification, etc.) can be cast in the common format of a nonlinear pro-
gramming problem, “Find the set of r design variables ξ, that maximizes a

generalized performance index I(ξ) subject to the constraint ξ ∈ Ω ⊂ IRr ”.
Methods for solving the problem above are available in the literature and
implemented in many mathematical software libraries and packages. We
therefore focus our attention on the correct formulation of convenient per-
formance indices, whose maximization corresponds to optimization of sensor
accuracy. It will be shown that a general performance index can be defined
on the basis of the Fisher information matrix associated with the system.

The paper is organized as follows: in section 2 the background of several
types of systems for which the sensor design problem may be posed to the
designer are reviewed, and the role of the information matrix is illustrated.
In section 3 techniques for extracting the desired information out of raw
data from transducers are reviewed, with the purpose of providing insight
in the sensor design process. Section 4 is dedicated to illustrating design
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performance indices that can be used for optimizing the sensor arrange-
ment. In section 5, the optimal design of the sensing system for detecting
the deformations of a simple elastic beam is reported as an illustration; a
more realistic application to the design of force/torque sensors for robotic
manipulators is finally illustrated.

2 General framework

The problem of sensor design may arise in connection with a wide variety
of systems, with different structures and characteristics. However, a general
framework exists in which most sensor design problems can be studied. For
many of the systems considered in this paper, we will refer to a measurement

equation of the form
Y = MX (1)

where X is the vector (state) to be measured, Y is a data record from
measurements, and M is the measurement operator, that in general depends
upon the sensor design in a known relationship.

A first, requisite in the design of sensors for a given system is to guarantee
that different states of the system are distinguishable from data: mathemat-
ically, that the nullspace of M is void.

Equation (1) is usually overconstrained: i.e., it consists of more equations
than unknowns. Measurement noise and inaccurate modelling of the system
lead to perturbations of the measurement equation, and consequently to the
inconsistence of (1). Such perturbations will be modelled according to their
effects on either measurement data, δY , or on the measurement operator, δM .
Assuming additive modelling errors, the perturbed measurement equation
can be written as

Y = (M + δM )X + δY (2)

Under reasonable assumptions, the measurement error δY and the modelling
error δM are “small” compared to other terms in (2). In solving (2), how-
ever, those perturbations are propagated to the solution X in a way that is
basically dictated by M−1, which in turn intrinsically depends on the sensor
design. In general, different algorithms will lead to different approximations
of the solution. The second goal for the sensor designer, therefore, consists of
obtaining the least propagation of measurement and modelling errors in the
output, irrespective of the algorithm adopted for the solution. This concept
of “absolute” accuracy is well captured in the so-called Fisher information
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matrix. In the rest of this section the embodiment of the concept of mea-
surement equation and information matrix in some frequently encountered
types of system will be introduced.

2.1 State estimation in linear systems

Let the system whose states are to be measured be described by the linear,
continuous-time, autonomous differential equation

ẋ(t) = Ax(t) + Gu(t) (3)

y(t) = Cx(t) + v(t) (4)

where x, y, u, and v are n, m, q, and m−dimensional vectors, respectively,
describing the states, outputs, process (driving) noise, and measurement
noise; let the matrices A, G, C have suitable dimensions. Equation (4)
models the multivariate sensory subsystem: the sensor output is related to
the system states through the output matrix C, and is affected by measure-
ment noise v. The purpose of sensors is to obtain information on the current
state of the system, x(t), from the measured output function y(t).

If the number m of (independent) measurements available at any instant
of time is equal to, or larger than, the dimension n of the state vector, the
measurement equation (1) is easily recovered by putting Y = y(t), M = C,
X = x(t). Measurement errors are δY = v(t) in this case, and perturbations
δM are due to inaccuracies in modelling the output matrix C. Since in this
case the dynamic equation (3) plays no role, this will be referred to as a
“static” sensor.

Most often, however, fewer measurements are instantaneously available
than state variables, and the dynamics (3) have to be taken into account.
The most straightforward approach for reconstructing the state from the
outputs in a time-invariant system (where A, G, and C are constant) con-
sists of repeatedly deriving the measured outputs. From (3) and (4), in the
absence of noise (u(t) ≡ 0, v(t) ≡ 0), we have

y = Cx(t),

ẏ = CAx(t),

· · ·
y(p−1) = CAp−1x(t).

These equations can be put in the measurement equation form by putting

Y =
[

yT ẏT . . .y(p−1)T
]T

;
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M =
[

CT ,ATCT , · · · , A(p−1)TCT
]T

.

The measurement matrix M in this case is what is called, in system-theoretic
language, the observability matrix (of the second kind) of the system. In the
absence of noise, then, the problem of state reconstruction is equivalent to
the solution of a linear system of p · m equations in n unknowns. A unique
solution can be found if and only if the rank of M is equal to n: in that
case, the system is said to be completely observable.

The first requirement in the design of sensors for a given system, i.e. in
the choice of C given A, in this case translates to guaranteeing that the
observability condition is met. Classical results of linear system theory find
direct application here. From the Cayley-Hamilton theorem, observability
can be decided using no more output derivatives than are the unknown
states, p ≤ n. For non-pathological systems, the observability requirement is
not very hard to meet: even with a single basic transducer and any t, a sensor
design C can always be found such that the state is completely observable
if A is non-derogatory (i.e. if the degree p of the minimal polynomial of A

such that Ap +a1A
p−1 + . . .+ap = 0 is equal to the state dimension, p = n).

In general, the use of m ≥ mg transducers is required completely to observe
a dynamic system whose maximum geometric eigenvalue multiplicity is mg.
In the following it is assumed that the above necessary conditions on the
number of basic transducers for complete observability of the system are
met.

State reconstruction using the derivatives of measurements cannot be
applied to time-varying systems, and even for time-invariant systems it is
highly unpractical due to the inaccuracy of derivative operations in the
presence of noise. A more general method for state reconstruction is based
on the estimation of the state at the initial time t0. In fact, assuming perfect
knowledge of the system model, the unperturbed state x(t) at any time t
can be formally reconstructed from knowledge of x(t0) = x0 at time t0 by
using the solution of the differential equation (3)

x(t) = Φ(t, t0)x0, (5)

that is expressed in terms of the state-transition matrix Φ(t, t0). By mea-
suring the corresponding output function at time instants τ between t0 and
t we have

y(τ) = C(τ)Φ(τ, t0)x0
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and, multiplying both sides by ΦT (τ, t0)C
T (τ)W(τ) (here W(τ) is a positive

definite m × m weighting matrix) and integrating over [t0, t], we obtain

Y(t) = M(t) x0, (6)

where

Y(t) =

∫ t

t0
ΦT (τ, t0)C

T (τ)W(τ)y(τ)dτ ; (7)

M(t) =

∫ t

t0
ΦT (τ, t0)C

T (τ)W(τ)C(τ)Φ(τ, t0)dτ. (8)

Whenever we are able to evaluate the solution (5), therefore, we may also
solve the linear system (6) of n equations for the n unknowns x0. This can
be done if the n × n matrix M is invertible. Note that invertibility of M
does not depend on the weight matrix, as long as W is positive definite
for all t. If W is the identity matrix for all t, M is called the observability

matrix (of the first kind) for the system (3)-(4). More generally, (8) presents
an instance of the so-called Fisher information matrix associated with the
given system and sensor, provided that W(t) is chosen corresponding to the
statistic properties of the measurement process (this will be discussed in
section 3).

2.2 Calibration Problems

The calibration process of an instrument, consisting in the estimation of
a constant n-dimensional parameter vector x by using an m-dimensional
measurement vector y, can be modelling in the framework described above
by simply letting A = G = 0. If m < n, calibration is only possible
with a time varying observation matrix C(t). This is the case, for instance,
in the calibration of an inertial navigation system [Friedland, 1977]. By
integrating over time, or considering discrete measurements as discussed
in the subsections above, the calibration problem is again reduced to the
solution of an overconstrained measurement equation.

2.3 Discrete time linear systems

In practical applications, the continous time estimation described above
may not be feasible, and interest is usually focussed on measurements of
the system states taken at discrete instants tk, k = 0, 1, 2, . . .. Further
justification for considering discrete-time sensor models is provided by an
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important result of Mehra [1976], stating that for any continuous sensor
system design, there exists a discrete design with a finite-length record of
measurements that provides the same information on the system (see section
4). The difference equation describing the system (3) is in this case

xk+1 = Φkxk + Γwk (9)

yk = Ckxk + vk (10)

where

Φk = Φ(tk+1, tk)

Γwk =

∫ tk+1

tk

Φ(tk+1, τ)G(τ)u(τ)dτ.

Representing a record of q measurements taken at times tk, k = 0, 1, . . . , q−1
by a column vector Y, a measurement equation is obtained in the form (1)
by putting X = x0, and

M =



CT
0 , ΦT

0 CT
1 , ΦT

0 ΦT
1 CT

2 , · · · ,
q−1
∏

j=0

ΦT
j CT

q





T

In the presence of driving and measurement noise, perturbations are intro-
duced as in (2),

Y = (M + δM )X + δY ,

where

δY = δw + δv

δw =






0, (Γ0w0)

T
CT

1 , · · · ,




q−1
∑

j=0

q−1
∏

i=j+1

ΦiΓjwj





T

CT
q







T

δv =
[

vT
0 vT

1 . . .vT
q−1

]T
,

and the modelling error δM reflects the fact that the system model (9) and
(10) are only known within a limited accuracy.

2.4 Distributed Parameter Systems

If the nature of the dynamical system to which sensors are to be attached is
continuous (a distributed parameter system, DPS) rather than representable
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by a finite state vector (as in a lumped parameter system, LPS), the ordi-
nary differential equation description (3), (4) must be replaced by a partial
differential equation description. For a linear time-invariant DPS, the same
formal appearance of differential and output equations (3), (4) can be re-
tained, with the understanding that now x is infinite-dimensional (i.e. an
element of a function space, usually a separable Hilbert space), and that
A represents a differential operator which is supposed to be regular and
to generate a semi-group eAt (t ≥ 0). In these hypotheses, solution (5) is
applicable to DPS as well. As for the observability of the system state, the
relationship (6) holds with the understanding

Y =

∫ t

0
eA∗τC∗y(τ)dτ ;

M =

∫ t

0
eA∗τC∗WCeAτdτ

(here “∗” indicates the adjoint operator). Note that, notwithstanding the re-
semblance of the formulae in the LPS and DPS case, subtle system-theoretic
differences do occur (e.g., in the definition of complete observability; also, the
information matrix M may be unbounded for DPS). For a detailed reference
on DPS theory, see e.g. Curtain and Pritchard [1978].

Distributed parameter systems usually allow the sensor designer a much
richer variety of choices than is affordable in LPS. In relation with the
spatial domain where the system is modelled, the shape and extension of
the areas where sensing is performed and the distribution of sensing “ac-
tion”(sensitivity) over such areas are subject to design, along with the loca-
tion of sensing zones and their number. An arrangement of sensors (possibly
including “pointwise” transducers inside or on the boundaries of the system
spatial domain) is said “strategic” for the system if the observability condi-
tion is fulfilled. El Jay and Pritchard [1987] showed that, for a given sensor
location and area, there always exists a distribution of action that makes
the sensors strategic; the converse also holds. In practice, it turns out that
it is always possible to observe a system even by one sensor (or by m ≤ ma

sensors, where ma is the maximum multiplicity of the eigenfunctions of A)
[El Jay, 1991].

For almost every practical purpose, DPS models are dealt with by ap-
proximation methods, that ultimately lead to a finite dimensional dynamic
system of the type (3)-(4). This can be done either by replacing partial
differential equations with their finite-differences approximations, or by us-
ing the so-called N -modal approximation. The latter method, that is the
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most widely used in optimal sensor design literature (see e.g. Carotenuto
and Raiconi [1980]), involves the truncation of the infinite Fourier series ex-
pansion of the states and of the observations in its first N terms, according
to the increasing order of the partial differential operator eigenvalues. The
truncation can be applied at different stages of the optimal design proce-
dure. However, in most cases the final stage of design optimization is applied
to a finite-dimensional system whose main characteristics are described by
the associated Fisher information matrix. Other approaches, such as that
of Curtain and Ichikawa [1978] who generalize the information matrix ap-
proach to an infinite dimensional “information operator”, fall outside the
scope of this paper. For a review of optimal sensor placement techniques in
DPS, see e.g. Kubrusly and Malebranche [1985].

2.5 Nonlinear Systems

When dealing with nonlinear systems of the type

ẋ = f(x,w, t), 0 ≤ t ≤ T (11)

with measurements taken at discrete time instants tk,

yk = h(x, tk) + vk, k = 1, 2, . . . , N

the problem of state reconstruction is much more complex than for linear
systems, and specific assumptions usually are needed on the class of non-
linearities involved. However, it can be shown that, regardless of the actual
reconstruction method used, an upper bound on the observation accuracy
can be provided in terms of the Fisher information matrix associated with
the system. The matrix can be derived, according to Kosut et al. [1982], as

M =
N

∑

k=1

HT
k WkHk

where Wk is the inverse of the covariance matrix associated with vk,

Hk =

(

∂h

∂x0

)

t=tk

=

(

∂h

∂x

∂x

∂x0

)

t=tk

,

and the state sensitivity matrix ∂x

∂x0
is the solution of

d

dt

(

∂x

∂x0

)

=
∂f

∂x

∂x

∂x0

,

(

∂x

∂x0

)

t=0
= In
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2.6 Other Applications

Techniques for optimal design of sensors in both dynamical and static sys-
tems have been developed and used in many more fields than can be ac-
counted for in this paper. One field where an interesting body of theory
has been developed is optimal design of inputs (or “experiments”) for model
identification. The problem of optimally planning experiments for infer-
ring unknown parameters has been extensively treated in statistics, see e.g.
Fedorow [1972], and in the automatic control and system theoretic litera-
ture [Mehra, 1974; Goodwin and Payne, 1977; see also Ljung, 1987]. Op-
timal design of sensors for identification has been particularly well studied
in the context of distributed parameter systems (see e.g. the survey paper
of Kubrusly and Malebranche [1985]). The optimal sensor location problem
has been studied for detecting sensor or actuator failures [Watanabe et al.,
1985], and more generally for detecting changes in the dynamical behavior
of systems [Basseville et al., 1987].

Furthermore, the optimal location of sensing or detecting devices has
been studied with reference to radar system design [Banach and Cunning-
ham, 1988], oceanic engineering [Wilson, 1988], to robotics [Cameron and
Durrant-White, 1990; Menq et al., 1989; Schroer et al., 1992], and more
generally to sensor data fusion problems [Clark and Yuille, 1990].

3 Solving the Measurement Equation

In the section 2, it has been shown that a wide variety of problems in mul-
tivariate sensing can be formulated in terms of the usually overconstrained
measurement equation (1),

Y = MX.

Considering only the fundamental linear, finite-dimensional case, the kernel
of the measurement operator is a d×m matrix M. We proceed to summarize
the basic tools used to solve linear measurement equations.

3.1 Least Squares Solution

The method consists of fitting data Y with a hyperplane in the model space,
trying to minimize the sum of squared misfit errors. The idea has been
applied to virtually every scientific field since circa 1800, and the point in
presenting it here is to emphasize some aspects related with the measurement
of physically dimensioned quantities. The weighted least squares solution to
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(1) is defined as the vector Xls such that the vector of deviations, Y−MXls,
is minimum in the W-weighted 2-norm sense, i.e.

Xls = arg min
X

(Y − MX)TW(Y − MX).

The least-squares estimate can be obtained through elementary calculus as

Xls = (MTWM)−1MTWY.

The numerical values of the weight matrix are subject to the constraint that
W is symmetric and positive definite (no meaning can be associated to the
least-squares problem otherwise). The physical dimensions of the entries
in W are also constrained: they must be such that the sum of weighted
squares to be minimized is carried over physically homogeneous quantities.
If [[α]] denotes the physical dimension of the quantity α, then the dimension
of the weights must satisfy [[Wi,j ]] = [[k]] [[Yi]]

−1[[Yj ]]
−1, where [[k]] are

arbitrary dimensions. Without loosing in generality, it can be assumed that
norms are always adimensional, i.e. that [[k]] = 1. Note also that M has
physical dimensions, since [[Mi,j ]] = [[Yi]][[Xj ]]

−1. As a consequence of
the physical dimensionality of the problem, bare (not weighted) least squares
hardly ever make sense in practical problems. Even though one may have
no idea of the right numerical weights to use, and would like to use say the
identity weight matrix I, one must be careful to attach to its elements the
correct physical dimensions: this will prevent different results to derive from
the same problem when described with different metric units.

3.2 Bayesian Inference

The least-squares method is a purely deterministic approach to the solution
of the measurement problem. A fundamental drawback of the method is in
the choice of weights: the method does not provide hints so as how to choose
W. Yet, the weight matrix deeply affects the final solution. The intuition
is that weights should be chosen to take into greater account accurate mea-
surements and discard noisy data. However, the idea can only be formalized
in a probabilistic framework, such as that provided by Bayes’ theory of in-
ference. The basis of the Bayesian approach to the solution of measurement
equations is in defining the statistical properties of the data space and of
the model space. For a finite-dimensional linear measurement system, these
are vectorial spaces (Y and X, respectively) of suitable dimensions (both
algebrical and physical), where vectors Y and X take their actual values,
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and where probability density functions (p.d.f.) are defined for the variables
of interest. The a priori state of information consists in a p.d.f. defined
over the model space X, fprior(X), which models any knowledge one may
have on the system model parameters independently from the present act
of measurement, due e.g. to physical insight or to independent measure-
ments carried out previously. In the formation of measurement data, two
information sources are to be considered, i.e. the forward solution of the
physical model, and the act of measuring itself. The state of information on
the experimental uncertainties in measurement outputs can be modelled by
means of a p.d.f. fexp(Y) over Y (this is usually provided by the instrument
supplier), while modelling errors (due e.g. to imperfect knowledge of M

in (1)) can be represented by a conditional p.d.f. fmod(Y|X) in the data
space Y (or, more generally according to Tarantola [1987], by a joint p.d.f
fmod(Y,X) over X × Y ).

Fusing the different information in an estimate of X leads to a posterior

p.d.f over X, that is described by Bayes’ formula

fpost(X) = f(X|Y) = αb fprior(X)

∫

Y
fexp(Y)fmod(Y|X)dY, (12)

where αb is a normalization factor such that
∫

X fpost(X)dX = 1. The process
of information fusion is described in figure 1, adapted from Tarantola [1987],
with reference to the most general case where the measurement equation
Y = M(X) is nonlinear.

Although the posterior p.d.f. on the model space represents the most
complete description of the state of information on the quantity to be mea-
sured one may wish, a final decision on what is the “best” estimate of X

needs usually be taken. Several possibilities arise in general, depending upon
the adopted criterion of optimality:

• the maximum a posteriori estimate (MAP) corresponds to choosing the
model value Xmap with largest posterior p.d.f, such that fpost(Xmap) ≥
fpost(X) for all X ∈ X;

• the maximum likelyhood estimate (MLE) maximizes the probability of
the observed value of the output, given the candidate solution X, so
that f(Ŷ|Xmle) ≥ f(Ŷ|X), ∀X ∈ X. If the a priori p.d.f. fprior(X)
is non-informative (in most cases that means uniform over X), MAP
and MLE estimates coincide;

• the minimum variance estimate (MVE) (or minimum mean square,
MMSE) minimizes the weighted `2-norm of deviations, i.e. the quan-
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tity
∫

X(X̂ − X)TW(X̂ − X) f(X|Y)dX. The MVE can be shown to
be independent from the (arbitrary, positive definite) matrix W, and
equals the conditional mean of X given Y.

Figure 1-e illustrates these estimates. While very little can be said in general
about the performance of such estimators, well known particularizations
apply under certain assumptions on the prior distributions:

• If both fprior(X) and fexp(Ŷ|Ỹ) are generalized Gaussian distributions
of order p, and if modelling errors are negligible, the MAP estimator
can be easily evaluated from the measurement output and the prior
expectation (see for instance Tarantola [1987]). For p = 1, the MAP
estimator equals the least-absolute-value estimate (in the weighted `1-

norm sense), minimizing the quantity
∑

i
|(MX)i−Ŷi|

wd,i
+

∑

j
|Xj−Xprior,j |

wm,j
.

For p = ∞, the MAP estimate corresponds to the minimax-absolute-

value estimate (in the weighted `∞-norm sense), that minimizes

max

{

max
i

|(MX)i − Ŷi|
wd,i

; max
j

|Xj − Xprior,j |
wm,j

}

.

• If a normal distribution (an order-2 Gaussian) can be assumed for all
prior information, the MAP estimate enjoys many useful properties.
First (and perhaps most importantly for the problem of optimal sensor
design), since the convolution (in (12)) of two Gaussian distributions
is Gaussian, the modelling and experimental errors in measurements
simply combine by addition of the covariance matrices of experimental
and modelling errors, CY = Cexp + Cmod [Tarantola, 1987]. Roughly
speaking, errors in the knowledge of M (calibration errors) can be
ignored provided that experimental errors in Y are suitably increased.
This result holds for nonlinear sensor models as well. For linear models,
the a posteriori p.d.f. is also Gaussian, the MVE and MAP estimates
coincide and evaluate to

X̂ = Cpost(M
TC−1

Y Y + C−1
priorXprior), (13)

Cpost = (M + C−1
prior)

−1, (14)

where M, the Fisher information matrix for linear measurement equa-
tions, is defined as

M = MTC−1
Y M. (15)
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Solution (13) is the minimizer of a quadratic form over the product
space Y × X (misfit function), and is apparently a generalization of
least squares, where covariance matrices are chosen as weights (covari-
ance matrices inherently satisfy the physical dimensions constraints
above discussed). As a final remark, the Gauss-Markov theorem [Rao,
1973] ensures that the estimate (13) is the best linear unbiased esti-
mate (BLUE) in the minimum-variance sense even for non-Gaussian a
priori distributions. This result may seem to indicate some “absolute
optimality” of the least-squares estimate. However, the MVE of a non-
Gaussian distribution may not be a significant estimate, as apparent
in figure 1-e. This is the case for instance when a few measurements
are grossly in error (outliers): the MVE in this case can provide mean-
ingless results. This fact is sometimes used to point out the lack of

robustness of the MVE.

3.3 Recursive Methods

Most often sensors that are part of dynamical systems must provide new
updates of model estimates without referring to the whole story of sensed
data. A generalized Gaussian posterior distribution over X corresponding
to a given record of data, for instance, is completely described by its mean
and dispersion estimators (covariance). When a new datum is available, all
prior information can be extracted from those statistics. A method that do
not use prior information explicitly, but through its statistics only, is called
recursive. The Kalman filter for state estimation in discrete-time systems
(9) is the recursive implementation of the MVE solution above discussed.
Its continuous-time version is the optimal (in the MV sense) observer for
a linear system subject to uncorrelated, zero-mean, Gaussian white noise
disturbances. The state estimate of a Kalman filter for the system (3)-(4),
where the driving and measurement noise processes have the (possibly time-
varying) spectral density matrices Q and R, respectively, evolves from the
initial guess x̂(0) = x̂0 according to

˙̂x = Ax̂ + PCTR−1(y − Cx̂),

where the estimate covariance matrix P obeys the Riccati differential equa-
tion:

Ṗ = AP + PAT + GQGT − PCTR−1CP (16)

P(0) = P0.
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The role played by the sensor design (i.e., the choice of C), and also by
its time scheduling (which affects R(t), as discussed by Mehra [1976]), in
the evolution of the estimate covariance P, is not easily analyzed directly
from (16). Design (and scheduling) performance indices have therefore to be
based on either a steady-state solution of (16), which exists and is unique
for completely controllable and observable time-invariant systems, as for
instance in Arbel [1982]; or, more generally, on bounds on P. The Cramèr-
Rao [Rao, 1973] bounds are written in the linear case as

[MR(t0, t) + N−1
Q (t0, t)]

−1 ≤ P(t0, t) ≤ M−1
R (t0, t) + NQ(t0, t) (17)

where MR, the R(t)-weighted observability matrix according to (8), is the
Fisher information matrix for this problem, and

NQ =

∫ t

t0
Φ(t, τ)G(τ)Q(τ)GT (τ)ΦT (t, τ)dτ

is independent of the sensor design and scheduling. According to this obser-
vation, Mehra [1976] proposes to consider the minimization of M−1

R as an
instrument to minimize P. This is further justified by the fact that, in the
absence of process noise (Q = 0) and of prior information (P−1

0 = 0), the
Riccati equation solution is exactly P(t0, t) = M−1

R (t0, t).
Cramèr-Rao bounds on estimate covariance for non-linear systems have

also been applied to optimal sensor design problems (see e.g. Kosut et al.

[1982]). In the context of non-linear systems, however, it must be empha-
sized that minimum-variance estimates do not enjoy the properties that
make them desirable for linear systems, and MVE-based optimal sensor de-
sign is often questionable.

4 Design Performance Indices

The core of sensor optimizing design is in the choice of suitable performance
indices whose minimization (or maximization) over the set of allowed design
parameters provides the sought optimum. Such indices must conform to two
fundamental requisites: they must be capable of embodying the desirable
properties of the sensor, and they must be computationally efficient. The
second requirement obviously follows from their use in practical optimization
algorithms, whose numerical convergence properties and time requirements
strongly depend on the index.
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4.1 Linear-Gaussian hypothesis

From the assumption that white, zero-mean, Gaussian noise processes act
on a continuous or discrete time linear system, it is possible to obtain a
rather complete description of how design parameters affect the overall re-
construction accuracy. In such a case, in fact, the posterior p.d.f. in the
model space X is Gaussian itself, with mean value and covariance operator
as given by (13). A particular estimate X̂ from a given data record is a
random variable itself, which is asymptotically normally distributed about
the “true” value X0 with covariance Cpost. A useful interpretation of that
result can be given in terms of the so-called confidence ellipsoids. To do
so, let us first assume that the measurement equation only contains phys-
ically adimensional quantities, and that no prior information is available.
The confidence ellipsoids are subsets of X described in terms of the Fisher

information matrix M = MTC−1
Y M as

Eα =
{

X̂ ∈ X|(X0 − X̂)TM(X0 − X̂) ≤ α2
}

The probability that the MVE solution falls inside Eα is a tabulated func-
tion of α. A confidence interval for the i-th component of X̂ can be easily

derived from its standard deviation M−1/2
ii and statistical tables (see figure

2). The shape of the ellipsoids of the family depends on the eigenstructure
of the posterior covariance operator. If M = UΛUT is the diagonal decom-
position of M, the length of the major axis of the ellipsoid is the inverse of
the square root of the minimum eigenvalue Λ1,1 and lies in the direction of
the corresponding eigenvector U1 (the first column of U); the minor axis
length is the inverse of the square root of the maximum eigenvalue of M,
and so forth (see figure 2). Accordingly, the direction of the major axis
corresponds to the least estimate accuracy in X. Other parameters such as
componentwise Cramèr-Rao bounds CRi and “geometric dilution of preci-
sion” (GDOP) can be obtained from confidence ellipsoids (see e.g. Maine
and Iliff [1981]).

In the general case that priori information is available, and that physical
dimensions are present, rather than with the eigenstructure of the infor-
mation matrix, one should deal with the generalized eigenvalue-eigenvector
problem Mv = λC−1

priorv. The direction of the major axis of the correspond-
ing ellipsoid is the combination of unknowns which is resolved best from the
given measurements. Equivalently, one may refer to the normalized mea-

surement equations,
Ȳ = M̄X̄ (18)
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where the coordinates are changed according to

Ȳ = TY Y; (19)

X̄ = TXX; (20)

M̄ = TY MT−1
X ; (21)

The linear transformations TY , TX are chosen so that, in the new coor-
dinates, the prior information covariance matrix and the measurement co-
variance matrix are identity matrices of suitable order; moreover, the in-
formation matrix is diagonal. Such transformations can be calculated as
follows:

TY = C
−1/2
Y

TX = STC
−1/2
prior,

where SC̄postS
T is a diagonal decomposition of C

−1/2
priorCpostC

−T/2
prior . Normal-

ized measurement equations only involve adimensional quantities, and have
the desirable property of being unique and invariant with changes of vari-
ables. Moreover, the confidence ellipsoid geometry is completely described
by the diagonal elements of M. Finally, note that also the posterior covari-
ance matrix C̄post is diagonal in the new coordinates.

From the properties of confidence ellipsoids, it appears that virtually
any reasonable design performance index for a linear-Gaussian system sen-
sor can be related to the ellipsoid shape and volume. Natural candidates for
maximization are the determinant (proportional to the product of the eigen-
values), the trace (sum of the eigenvalues), and the minimum eigenvalue of
M. Müller and Weber [1972] embedded the above indices in a general form

Is =

(

1

n
trMs

)1/s

, s ≥ 0, n = dimension of X

which specializes as

lim
s→0

Is = n
√

det M (determinant index)

I1 =
n

trace(M−1)
(trace index)

lim
s→∞

Is = λmin(M) (min eigenvalue index).

Obviously, constraints on feasible design parameters are in order in any
genuine engineering problem, that make the above maximization problems
practically meaningful.
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Let us first consider the optimal allocation in time of sensing accuracy
for continuous time linear systems (measurement scheduling problem). As-
sume that the overall amount of accuracy we can use for estimating the
initial state by means of measurements between times t0 and t1 is bounded
by

∫ t1
t0

R−1(t)dt ≤ A. As already mentioned, Mehra [1976] has shown that,
among all feasible schedules R(t) that optimize a given index, there is a
discrete schedule R∗(t) = Riδ(t− ti) consisting of measurements at a finite
number of instants ti only, with t0 ≤ ti ≤ t1 and

∑

R−1
i = A. Roughly

speaking, this result allows us to replace a continuous-time measurement
process such as (4) with a discrete process (10) for analysis purposes. The
same author presents an algorithm for choosing the optimal discrete sched-
ule.

A general formulation of the optimization of sensor design with respect
to a set of parameters ξ (e.g., the physical parameters of location and orien-
tation of transducers in the system) that enter in the measurement matrix
C through functions Ci,j = fi,j(ξ) and are subject to constraints gk(ξ) ≤ 0,
is not amenable to analysis, and is only tractable by numerical optimiza-
tion methods (see example 2 below). Note that the problem will in gen-
eral have a multiplicity of locally optimal solutions, and that randomized
search algorithms (such as simulated annealing or Monte Carlo methods)
may recommend for such cases. In the assumption that the elements of
the measurement matrix can be chosen directly by the designer, and that
the design constraints can be formulated as a norm condition on the mea-
surement matrix itself, as e.g. ‖C‖ ≤ 1, the solution of the optimization
problem has been shown by Müller and Weber [1972] to correspond to the
solution of a nonlinear eigenvalue problem. Simple results are only available
for single-input, single-output, time-invariant systems; even then, however,
numerical analysis techniques are ultimately required to obtain the optimal
design [Mehra, 1976]. It is important to note that a given optimal design un-
der an index Is1

is not in general optimal also under Is2
[Müller and Weber,

1972].

4.2 Worst-Case Design

The design indices based on the linear-Gaussian hypotheses described in
the above section are well established design tools for multivariate sensors
that obey the hypotheses. Two fundamental theorems of statistics, namely
the central limit teorem and the Gauss-Markov theorem, guarantee to some
extent the extension of those methods to cases that depart from the strict
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hypotheses, due e.g. to some degree of nonlinearity. However, there do exist
cases where other indices may be considered by the designer. One motiva-
tion is found in high-responsibility systems subject to spurious disturbances
(outliers), where the designer’s primary concern is to minimize worst-case
sensing errors rather than error statistics. As already noted, MV estimators
may lack robustness to outliers, and related optimal design criteria may not
be the preferable choice.

Explicit worst-case/deterministic bounds on the errors, by which a sys-
tem’s states or parameters are estimated, are also required in conjunction
with some specific controller designs for the system, such as the currently
popular robust H∞ controllers. Although the theory of optimal worst-
case/deterministic estimation and/or identification is much more recent than
that of MVE, several important results have appeared in literature (see e.g.
Belforte et al. [1987], Tempo [1988], and Helmicki et al. [1991]). How-
ever, application of H∞ techniques to optimal design of sensors have not
received much attention to date. Finally, note again that in the presence
of non-Gaussian modelling errors the MVE approach and related optimiza-
tion results are not really founded on a justifiable rationale; however, the
simple results for worst-case optimal design of sensors that are described in
the following apply to that case directly. Considering the normalized mea-
surement equation (18) and omitting overbars for simplicity, let X0 be the
corresponding ”true” solution, and let X be the least-squares solution of the
same equation with modelling and measurement errors added:

Y = (M + δM ) X + δY .

We are interested in providing a bound on the maximum difference between
X0 and X, given bounds on the largest values attainable by perturbations δY
and δM . The problem is clearly related to perturbation theory in numerical
computation, in particular to Wilkinson’s theory of condition [1965]. Among
the various slightly different results available from the literature, we briefly
describe one from Golub and VanLoan [1989] because of its simplicity and
the insight it provides.

Assume that M is full rank, that ‖MX0 − Y‖ = 0, and that

ε = max

{‖δM‖
‖M‖ ,

‖δY ‖
‖Y‖

}

<
σmin(M)

σmax(M)
,

where σmin(M) and σmax(M) are the minimum and maximum singular val-
ues of the measurement matrix M, respectively. Note that in normalized
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equations these correspond to the square root of the eigenvalues of the Fisher

information matrix M. Moreover, put E = δM/ε and e = δY /ε, and let
0 < s < ε parametrize a class of measurement equations with increasing
perturbations, whose least-squares solution X(s) is given by

(M + sE)T (M + sE) X(s) = (M + sE)T (Y + se),

Differentiating this solution with respect to s at s = 0 we obtain

ET M X(0) + MT E X(0) + MTM
dX

ds

∣

∣

∣

∣

s=0
= ETY + MTe,

and, from the series expansion about X(0) = X0,

X = X(ε) = X0 + ε
dX(s)

ds

∣

∣

∣

∣

s=0
+ O(ε2).

Using the above assumptions and taking norms, we obtain

‖X0 − X‖ ≤ ε‖(MT M)−1MT ‖ (‖e‖ + ‖E‖ ‖X0‖) + O(ε2)

= σ−1
min(M) (‖δY ‖ + ‖δM‖ ‖X0‖) + O(ε2).

(22)

In terms of relative errors we have the well known result

‖X0 − X‖
‖X0‖

≤ 2κε + O(ε2), (23)

where κ = σmax(M)/σmin(M) is the condition number of M, i.e. the square
root of the condition number of the Fisher information matrix associated
with the system. Note that a sharper result that avoids the dependency on ε
being ”small enough” can be obtained at the price of a more involved proof
(see e.g. Stewart [1977]). Thus, in the worst case, relative errors on mea-
surements and modelling are propagated to the solution by a factor κ(M)
(by definition, κ ≥ 1). Note that this “worst case” bound is a pessimistic
estimate of errors in the sense that it has zero mathematical likelihood of
being attained. However, there do exist cases when the bound is essentially
reached, as shown in the following example:

M =







0.9826 0.6515
0.7227 0.07269
0.7534 0.6316






,Y =







0.708805
0.394791
0.584581






,
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with perturbations

δM = 10−3







−0.200244 −0.121044
1.26751 0.766189

−0.613201 −0.370671






, δY = 10−3







0.140798
−0.891222
0.43116






.

In this case, κ(M) = 4.75231, ε = 10−3 and ‖X0−X‖
‖X0‖

= 0.00950462 = 2κε.

Note that the absolute worst-case bound (22) suggests to maximizing the
minimum eigenvalue of the Fisher information matrix of the sensor, that is
also one of the design performance indices obtained from statistic analysis
in the linear-Gaussian hypothesis. Minimization of the condition number,
on the other hand, minimizes the worst-case relative error (analogous in a
sense to a noise-to-signal ratio). In terms of relative errors, it may happen
that adding measurements is not rewarding from an overall accuracy point
of view, and it might even be counterproductive. This is shown in the
following most simple example. Let the measurement matrix be the 2 by
2 identity matrix, that is obviously best conditioned (κ = 1), and assume
that a measurement is added that is equal to the second one. The new
measurement matrix and a possible vector of measurements are

M =







1 0
0 1
0 1






, Y =







0√
2/2√
2/2






.

The worst-case perturbations are in this case

δM = 10−3







0 −
√

2/2
0 0
0 0






, 10−3







1
0
0






.

Hence, in this case κ(M) =
√

2, ε = 10−3 and ‖X0−X‖
‖X0‖

= 2κε = 2 10−3
√

2.
The seemingly contradictory fact that a criterion based on the condition

number may be lowered by adding measurements, while more measurements
can only increase the information on the system, reflects the geometric,
rather than statistical, nature of condition number criteria. Sensors are op-
timal with respect to the condition number criterion if every state is equally
well resolved from the measurement, irrespective of the absolute level of
accuracy. This characteristic of the criterion allows in some cases decompo-
sition of the optimization problem in two phases, dedicated to maximization
of relative and absolute errors, respectively (see example 2).

22



5 Design Examples

Example 1

Consider the design of a sensing system for estimating the state of a thin
bar pinned at its extremities (see figure 3).

The beam dynamics represent a simple example of distributed parameter
system, and are modelled by the Euler-Bernoulli partial differential equation

m
∂2u(x, t)

∂t2
− 2ξ

∂2

∂x2

∂u(x, t)

∂t
+ EI

∂4u(x, t)

∂x4
= 0

for 0 ≤ x ≤ L and t ≥ 0, where u(x, t) is the transverse displacement of
the beam and the applied force distribution is zero. For convenience, put
the beam parameters m (mass per unit length), I (moment of inertia), E
(modulus of elasticity), and L (length between supports) to unity, while the
damping coefficient is ξ = 0.05. Position transducers are to be optimally
placed at locations xi, 0 ≤ xi ≤ 1 along the beam to reconstruct the state
of the system. For the boundary conditions imposed by pinned supports,
modal frequencies are ωk = (kπ)2 and modal shapes are φk(x) = sin(kπx).
If a 3-modal approximation is adopted, a finite-dimensional dynamic model
can be written as

v̇(t) = Av;

y = Cv

where

v =



















u1(t)
u2(t)
u3(t)
u̇1(t)
u̇1(t)
u̇1(t)



















, A =

[

0 I3

−Λ2 −2ξΛ

]

Λ =







π2 0 0
0 4π2 0
0 0 9π2






, C =







φ1(x1) φ2(x1) φ3(x1) 0 0 0
. . . . . . . . . . . . . . . . . .

φ1(xm) φ2(xm) φ3(xm) 0 0 0






.

From the above continuous-time approximation a discrete-time model is then
obtained according to (9) and (10), with constant sampling time Ts = 1/40
sec, as Φ = eATs . Sensor measurements and model are affected by normally
distributed zero-mean errors with covariance matrix CY . Assuming that
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the measurement equation is in normalized form, i.e. that a coordinate
transform has been applied such that CY = Im, optimization criteria will

be applied to the measurement matrix M =
[

CT , ΦTCT , . . . ,Φ5TCT
]T

.

Let first consider the optimal location of a single sensor (m = 1). In
figure 4 the determinant, trace, minimum singular value, and inverse of the
condition number of the information matrix are plotted versus sensor po-
sition along the beam. Owing to symmetry, only one half of the beam is
considered; the ordinate scales have been normalized for comparison pur-
poses. It clearly results that the complete observability condition is met
by any sensor location different from the zeros (nodes) of the mode shapes
φi (located at x = 1/3, x = 1/2, and x = 2/3). This is in accordance to
the results of El Jay and Pritchard [1987], by which a single sensor can be
“strategic” if the maximum multiplicity of the eigenvalues is one as in this
case (one sensor may be insufficient if rigid body modes are present). It can
be observed from figure 4 that the optimal sensor location varies with the
index considered. Corresponding data are reported in table 6.

In figure 5 plots of the four indices are reported on a mesh of locations for
two position sensors placed on one half of the beam length. Optimal design
data are reported in table 6. For identical locations of the two sensors on the
beam (i.e., along the diagonals of the mesh plots), the indices are exactly
twice those obtained with one sensor (except the inverse of condition number
one that does not change), and follow the same curves shown in figure 4.
The increase in accuracy is much larger if different locations are chosen.

Example 2

As a second example, the results of the optimized design of a more complex
device, a six-axis force-torque sensor, is reported. The design of multi-axis
force sensors, i.e. instruments for measuring several (up to 6) components
of force and torque simultaneously, is relevant to different fields such as
wind-tunnel testing, adaptive control of machines and thrust-stand testing
of rocket engines. Starting from the mid seventies, applications to robotics
and telemanipulation focussed much attention. A particular application to
the design of miniaturized robotic contact sensors to fit the phalanges of a
robot hand is described in Bicchi [1992], and briefly reported here.

Force-torque sensing is considered here as a static problem, where the
relationship between the unknowns (six normalized components of the re-
sultant fiorce and torque applied on the sensor) and the measurements (m
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transducers, usually strain-gauges) is linear. Small deviation from linearity
can actually be accomodated for by nonlinear compensation techniques [Hi-
rose and Yoneda, 1990]; for simplicity however, nonlinear compensation is
neglected in the optimal design described in the following. Design param-
eters directly affect the elements of the measurement matrix M = C. The
mechanical structure of the sensor is sketched in figure 6: it consists of a
hollow, thin-walled cylinder. Strain-gauges are applied on the external sur-
face of the cylinder. The cylinder dimensions, the position of the gauges on
its structure and their orientation are the variables to be optimized. Figure
6 shows the {O, ζ1, ζ2, ζ3} reference frame in which the components of the
load applied to the sensor extremities are expressed. The axis ζ1 is placed
along the cylinder axis. The position of the ith gauge is uniquely determined
by the cylindrical coordinates of its center point, ζ1i

and θi, and by the angle
φi formed by the gauge axis with the cylinder axis. The design variables are
three for each gauge, plus the cylinder radius and wall thickness, for a total
of 20.

The simplicity of structure allows the evaluation of the entries of the
measurement matrix C by means of simple relations of elastic beam theory
[Timoshenko, 1965]. Note that the computation of C has to be done at each
iteration, so that the use of more demanding techniques as finite element
methods (FEM) is unexpedient. The strain measured by the ith gauge is

vi =
∑

j=1,6

Ci,jpj ,

where pj is the value of the jth load component normalized with respect to
its nominal maximum value, pj,max. Elements Ci,j are as follows:

Ci,1 = p1,maxWn(cos2 φi − ν sin2 φi);

Ci,2 = p2,max

[

Wfζi cos θi(cos2 φi − ν sin2 φi) + Ws sin θi sin 2φi

]

;

Ci,3 = p3,max

[

Wfζi sin θi(cos2 φi − ν sin2 φi) + Ws cos θi sin 2φi

]

;

Ci,4 = p4,maxWt sin 2φi;

Ci,5 = p5,maxWf cos θi(cos2 φi − ν sin2 φi);

Ci,6 = p6,maxWf sin θi(cos2 φi − ν sin2 φi);

where ν is the Poisson’s ratio for the structure material, and the moduli W
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are defined as

Wn =
1

2πRsE
;

Wf =
2Wn

R
;

Ws = 2(1 + ν)Wn;

Wt =
(1 + ν)Wn

R
,

E is Young’s modulus, R is the cylinder radius and s its wall thickness.
The relations above are valid in the assumption s ¿ R: in this case, 1/s
is a scale factor of Ci,j , that does not affect its structure. In other words,
the relative accuracy of the sensor does not depend on the wall thickness;
s can be chosen independently of other design variables, and made such
that minimum sensitivity and maximum strain level requirements are met.
A worst-case optimal design of the sensor can then be obtained through
minimazion of the condition number index, and sensitivity adjusted with s.

In the reported example, other design constraints for the sensor to fit a
robotic hand fingertip were considered:

0 > |ζi − ζj | − lmax,

Rmax > R > Rmin > 2s,

where lmax = 15mm, Rmax = 6mm. It is assumed that every strain gauge
exhibit equal noise statistics: the measurement noise covariance matrix is
therefore diagonal with equal elements, and does not affect the design. To
comply with severe size requirements, the minimum necessary number of
transducers (i.e., 6) have been used on the sensor.

Two criteria have been considered for optimization: maximization of
the minimum singular value of the information matrix, and minimization
of its condition number. The former criterion is valid both in the linear-
Gaussian framework, and in the absolute worst-case framework. The latter
can address the relative worst-case case. As a consequence of its sensitivity
to the absolute scaling of the information matrix, the singular value criterion
tends to push the design at the lower bounds of the allowed ranges of wall
thickness and cylinder radius. It was decided then to use the two methods in
a cascaded fashion, using first the condition number minimization to find a
reasonably “balanced” design. The condition number criterion is indifferent
to the wall thickness parameter, but sets an optimal cylinder radius, which
is used in the subsequent minimum singular value optimization.
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The singular values and the condition number of the compliance matrix
are complex functions of the 6 × 3 + 1 = 19 design variables whose minima
cannot be found analytically. A numerical algorithm (a version of Powell’s
and Broyden’s methods [Dahlquist, 1974]) has been employed. The values
of design variables corresponding to the lowest of the relative minima found
in repeated trials are given in table 3 and 4, corresponding to minimizing
the condition number and to maximizing σmin, respectively. The singular
value decompositions of corresponding compliance matrices are reported in
tables 5 and 6, respectively.

These results show that a fairly well conditioned design can be obtained
with the proposed method. Note that, according to table 6, the ratio be-
tween the maximum and minimum sensitivity in the final design is 2.16.
Minimum sensitivity occurs approximately corresponding to the p1 compo-
nent of the load, acting along the cylinder axis, that is intuitively the stiffest
direction for the sensor.

6 Conclusions

In this paper an introduction and overview of methods for the optimal design
of multivariate sensors has been presented. An attempt has been made at
unifying the treatment of different sensing problems in a general framework,
where common features of solution methods and optimization mathematical
criteria could be emphasized. A central role in the problem is played by the
eigenstructure of the Fisher information matrix associated with the systems
at hand. Indications have been given that care must be taken in dealing with
the physical dimensions of vector variables. Also, a glimpse into the worst-
case optimization methods has been provided, along with an application to
a practical device for robotic sensing.
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Captions

Figure 1: The process of Bayesian inference (adapted from Tarantola
[1987]). (a) A priori information on the model space, fprior(X), and in-
formation on experimental data fexp(Y) are independent, and combine in
the joint p.d.f. fjoint(Y,X), (b). Information on modelling is represented
by fmod(Y,X) (c). The conjunction of fjoint(Y,X) and fmod(Y,X) is
fpost(Y,X) (d). The marginal p.d.f.’s fpost(X) and fpost(Y) (e) can be
obtained directly from fpost(Y,X). Different estimators can be applied to
these results, as illustrated in (e).
Figure 2: A two-dimensional confidence ellipsoid
Figure 3: Flexible bar pinned at its extremities and its first three bending
modes.
Figure 4: Sensor design performance indices plotted vs. the position of one
sensor on a pinned flexible bar.
Figure 5: Sensor design performance indices plotted vs. the position of
two sensors on a pinned flexible bar.
Figure 6 A miniaturized force/torque sensor with cylindrical beam struc-
ture.
Table 1: Optimal sensor location according to different performance in-
dices.
Table 2: Optimal sensor location according to different performance indices
in a two d.o.f. design.
Table 3: Optimal design variables for the six-axis miniaturized force sen-
sor, corresponding to the nominal load: p1 = p2 = p3 = 10N ; p4 =
60Nmm; p5 = p6 = 85Nmm. Criterion used: minimization of condition
number. Optimal condition number = 2.16; minimum singular value = 2.65.
Table 4: Optimal design for the sensor of table 3, using the criterion of
maximization of minimum singular value. Minimum singular value = 2.8;
corresponding condition number = 2.75.
Table 5: Singular values and corresponding vectors of the sensor compliance
matrix for the optimal set of design variables listed in table 3.
Table 6: Singular values and corresponding vectors of the sensor compliance
matrix for the optimal set of design variables listed in table 4.
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Figure 2
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Figure 3
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Figure 5
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Figure 6
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Determinant Trace Min. Eigenvalue Inverse of C. N.

Optimal Sensor 13/60 23/120 23/120 11/60
location

Index value 2.8 10−2 4.3 10−4 9.7 10−5 3.7 10−5

Table 1
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Determinant Trace Min. Eigenvalue Inverse of C. N.

Optimal Sensor 2/9 7/36 1/6 5/36
location 1/2 1/2 1/2 1/2

Index value 0.08 1.7 10−3 4 10−4 0.8 10−4

Table 2
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Variable φ(rad) θ(rad) ζ(mm) R(mm) s(mm)
Gauge no.

1 0.24 -0.18 -1.3
2 -0.52 2.1 -5.8
3 0.57 3.7 -2.6 5.6 0.1
4 -0.14 4.2 -1.1
5 -0.55 0.1 3.1
6 0.29 1.9 4.3

Table 3
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Variable φ(rad) θ(rad) ζ(mm) R(mm) s(mm)
Gauge no.

1 0.21 -1.3 -0.14
2 -0.49 1.2 -6.76
3 0.35 3.0 -4.0 5.6 0.1
4 -0.57 4.53 -1.1
5 0.24 0.0 3.4
6 -0.12 2.1 3.4

Table 4
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Singular Structure

Singular γ1 γ2 γ3 γ4 γ5 γ6

values 5.73 5.73 4.56 3.03 2.65 2.65

Singular u1 u2 u3 u4 u5 u6

vectors 0.00 0.00 0.00 0.06 -0.06 0.99
-0.01 -0.07 0.10 -0.41 -0.90 -0.03
0.03 0.06 0.94 -0.24 0.20 0.03
0.09 -0.12 0.31 0.87 -0.35 -0.07
-0.91 0.40 0.04 0.11 -0.07 0.00
0.41 0.90 -0.03 0.05 -0.10 0.00

Table 5
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Singular Structure

Singular γ1 γ2 γ3 γ4 γ5 γ6

values 7.71 6.06 4.66 3.61 2.80 2.80

Singular u1 u2 u3 u4 u5 u6

vectors 0.02 0.00 0.00 0.00 0.10 0.99
-0.56 -0.48 0.31 0.60 0.07 0.00
-0.33 0.19 0.75 -0.55 0.01 0.00
-0.10 -0.05 -0.03 -0.01 -0.99 0.10
-0.21 0.85 0.04 0.47 -0.03 0.01
0.72 -0.04 0.59 0.35 -0.09 0.00

Table 6
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