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Simplifying Telerobotics
Wearability and Teleimpedance Improve  

Human–Robot Interactions in Teleoperation

I
n recent years, wearability has become a new fundamental 
requirement for an effective and lightweight design of 
human–robot interfaces. Among the different application 
fields, robotic teleoperation represents the ideal scenario 
that can largely benefit from wearability to reduce 

constraints to the human workspace (acting as a master) and 
enable an intuitive and simplified information exchange 
within the teleoperator system. This effective simplification is 

particularly important if we consider the interaction with 
synergy-inspired robotic devices, i.e., those that are endowed 
with a reduced number of control inputs and sensors, with 
the goal of simplifying control and communication among 
humans and robots. In this article, we present an integrated 
approach for augmented teleoperation where wearable hand/
arm pose undersensing and haptic feedback devices are 
combined with teleimpedance (TI) techniques for the 
simplified yet effective position and stiffness control of a 
synergy-inspired robotic manipulator in real time. The slave 
robot consists of a KUKA lightweight robotic arm equipped 
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with the Pisa/IIT SoftHand, both controlled in impedance to 
perform a drilling task—an illustrative example of a dynamic 
task with environmental constraints. The experimental 
results from ten healthy subjects suggest that the proposed 
integrated interface enables the master to appropriately 
regulate the stiffness and pose of the robotic hand–arm 
system through the perception of interaction forces and 
vision, contributing to successful and intuitive executions of 
the remote task. The achieved performance is presented in 
comparison to the reduced versions of the integrated system, 
in which either TI control or wearable feedback is excluded.

The Motivation for Improving  
Human–Robotic Interaction 
Bilateral robotic teleoperation, called telerobotics (distance 
robotics), with force feedback sent to the user, represents a 
well-studied problem in literature. The ideal goal is to enable 
the user to not only interact with the remote environment 
but also perceive it as if it were being touched directly. At the 
same time, due to the closed-loop operation of the system, 
the stability of the master–slave control loop should also be 
ensured. In the literature, the tradeoff between transparency 
and stability has been elucidated by several important stud-
ies [1], [2]. For example, while force feedback is essential to 
increase the realism and effectiveness of the interaction in 
teleoperation tasks, avoiding instabilities due to the presence 
of latencies in the communication channel is challenging.

The different approaches for stable teleoperation include 
passivity-based approaches (see, e.g., [3]) and the virtual 
environment-based approach (see, e.g., [4]). Passivity-based 
approaches analyze the system’s energy flow and imply a 
sufficient but unnecessary (and also overly conservative) 
condition for stability. The virtual environment-based 
approach generates a geometric and dynamic model of the 
remote physical environment. Other techniques rely on the 
substitution of grounded kinesthetic force feedback [5] 
with other forms of feedback, such as visual/auditory or 
purely tactile [6], or scaling down the kinesthetic feedback 
to satisfy passivity at the cost of reducing transparency [7]. 
Visual–haptic feedback can also be combined with a virtu-
al-based approach, as in [8]. In our recent work, we pro-
posed an alternative approach to ensure the stability of 
teleoperation, TI, which consists of measuring and replicat-
ing the master’s limb endpoint impedance on the slave 
robot in real time [9]. Such a direct mapping enables the 
exploitation of very useful characteristics of the human 
musculoskeletal system, e.g., energy efficiency, resilience, 
and safety, that are typical of human behavior and are spe-
cifically targeted by the development of soft robots [10]. 
Nevertheless, effective regulation of the interaction param-
eters in TI control requires a priori knowledge about the 
task or a good perception of the environment by the master. 
Although the integration of grounded force feedback into 
TI control would be a feasible option, this kind of feedback 
commonly imposes additional constraints to the human 
limb and severely limits its overall workspace.

To overcome such limitations and, hence, enhance the 
transparency and intuitiveness of the human–robot interaction 
(HRI), wearable systems for haptic rendering and sensing have 
gained increasing attention in recent years [11]. Wearable hap-
tic systems are mainly thought to deliver tactile cues rather than 
kinesthetic information, thus ensuring a good tradeoff between 
stability and transparency. These systems can indeed be com-
fortably worn by humans, carried around, and integrated into 
their everyday lives, with ideal applications related (but not lim-
ited) to assistive technologies, virtual reality, and telemanipula-
tion of remote robotic systems [12].

TI and wearable haptics/sensing can play a crucial role in 
telerobotics, especially considering the overall simplification 
introduced by the concept of synergies, with a special focus 
on hands. Synergies can be regarded as the main covariation 
schemes in human hand joints, defining principal patterns of 
actuation and the sensing of human hands that reduce the 
burden for control of the human sensory-motor apparatus 
(see, e.g., [13]). The synergy idea has thus found a fertile field 
of application in robotics, inspiring the design, control, and 
sensing of artificial systems with a reduced number of actua-
tors, control inputs, and sensors (see, e.g., [14] for a review on 
this topic).

Toward the establishment of a teleoperation system that 
subsumes the advantages of wearable devices and remote 
impedance control, thereby targeting underactuated synergy-
inspired robotic systems, this article integrates our recent 
results in wearable hand-pose undersensing and haptic feed-
back for the TI control of a robotic hand–arm system (see Fig-
ure 1). The robotic system consists of a lightweight KUKA 
arm equipped with the Pisa/IIT SoftHand, an anthropomor-
phic robot hand endowed with 19 degrees of freedom (DoFs) 
actuated with only one motor, which ensures that the free-
hand movement is in accordance with the first human grasp-
ing synergy, i.e., the most common pattern of actuation 
observed in human grasping [13]. SoftHand is also robust yet 
adaptable and can deform with the external environment to 
multiply its grasping capabilities [15]. 

The force feedback on the grasping force exerted by the 
telecontrolled robotic hand is delivered through a wearable 
device on the operator’s arm [16]. At the same time, to 
increase the naturalness of the HRI, we track the human 
limb kinematics and the stiffness profiles through light-
weight sensory systems that do not reduce the natural work-
space of the master’s limb. Furthermore, to enable a more 
ecological hand pose reconstruction (HPR), i.e., to provide 
natural inputs for the remote control of the artificial hand, a 
wearable undersensed solution is exploited. To allow a natu-
ral interaction, it is particularly important to avoid cumber-
some solutions and, hence, to limit the number of sensors. 
The HPR is provided for all the joints used for the kinematic 
hand description but, through a suitable projection tech-
nique, only the contribution along the first grasping synergy 
implemented on the Pisa/IIT SoftHand is considered to 
command the position of the artificial manipulator in a 
more reliable manner.
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Both the robotic hand and arm are controlled in torque. In 
KUKA, the torque control is computed through torque sens-
ing and actuation [17]. In the Pisa/IIT SoftHand, the torque 
control is computed through current sensing and control on a 
custom control board. The tracking of the human hand 
movements in the direction of the first kinematic hand syn-
ergy is achieved through an optimally designed undersensed 
glove [18] and mapped to the robotic hand in real time. Syn-
chronously, a unidimensional index associates the cocontrac-
tion of the human grasp, estimated from one antagonistic 
pair of forearm muscles [17] to the SoftHand stiffness param-
eter. An interaction torque observer estimates the forces 
between the SoftHand and the object, which is fed back to the 
master using an upper-arm wearable mechanotactile device 
[16]. The tracking of the human right arm kinematics and its 
translational Cartesian stiffness components is achieved by 
reduced-complexity models that exploit minimum sensory 
data [17], [19] and replicated by the robotic arm’s Cartesian 
impedance controller in real time (decoupled from, but syn-
chronous to, the control of the SoftHand). The proposed 
interface enables the master to use arm configurations and 
muscular activations to regulate the pose and stiffness profiles 
of the robotic hand/arm system to generate task-required 
forces relying on the visual information and force feedback.

Figure 2 shows a block diagram of the control scheme 
employed. The values ,mi  , andm m1 2i i  represent the Soft-
Hand motor and clenching upper-limb force feedback (CUFF) 
motors angular positions, respectively, while refi  is the syner-

gistic reference configuration (or )v  commanded to the Soft-
Hand through the glove-based kinematic reconstruction. 
Furthermore, Im  is the current absorbed by the SoftHand 
motor and measured through current readings; I lut  represents 
the contribution to the reconstructed free-hand motion cur-
rent due to the angular position, velocity, and acceleration; and 

, ,K Kqs v  and Ka represent the functions related to the motor 
angular position, velocity, and acceleration, respectively. The 
term rI  is used to compute the reference angular motor posi-
tion of CUFF motors through the proportional factor .CUFFb  
See [16] for further details. 

Conclusively, the integration proposed here contributes to 
the successful and intuitive execution of remote tasks. The 
achieved performance is presented in comparison with reduced 
versions of the integrated system, where either TI control or 
wearable feedback is excluded.

The inspiration for our work is a generalized simplification 
strategy informed by the neuroscientific concept of synergies. 
This idea is used for the development and control of the 
SoftHand and for the optimal design of HPR. Furthermore, 
the concept of synergies, intended in a broad sense, has also 
driven the implementation of TI and force feedback. In TI, 
synergies led to a simplification of sensing components and 
methods, while the implementation of force feedback yields 
the possibility of rendering the overall force exerted by the 
SoftHand along its motion pattern, relying on an indirect esti-
mation of the force based on the current absorbed by the 
hand motor without using any extrinsic sensor.

Master Interface Remote Environment
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Position
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CUFF, Force
Feedback
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Figure 1. The integrated system and experimental setup. CDS: configuration-dependent stiffness; CMS: common-mode stiffness; 
CUFF: clenching upper-limb force feedback; EMG: electromyography. 
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The Robotic Hand and Arm System
The Pisa/IIT SoftHand [15] is an anthropomorphic hand 
designed with 19 DoFs, having four on each of the long fingers 
and three on the thumb. The fingers are capable of flexion/
extension as well as abduction/adduction. For abduction/
adduction of the fingers and at the equivalent of the carpometa-
carpal joint of the thumb, traditional revolute joints were 
employed. The rest of the joints incorporate rolling contact 
joints with elastic ligaments, which ensure physiologically 
correct motions when actuated but easily disengage on 
impact to allow a safe interaction with humans while preserv-
ing the hand. The elastic ligaments also allow deformation 
while ensuring the hand returns to its original configuration. 
This design enables the SoftHand to softly interact with the 
environment and adapt to the items, exploiting the external 
constraints. A single tendon runs though all joints to simulta-
neously flex and adduct the fingers upon actuation. The hand 
is actuated by a single dc motor, which moves the fingers on 
the path of the first synergy [13], hereinafter referred to as S  
described in ,R19  allowing the SoftHand to mold around the 
desired object (see [15] for further details). More information 
and computer-aided drawing files of this robotic hand can be 
freely downloaded from the Natural Machine Motion Initia-
tive (www.naturalmachinemotioninitiative.com/).

In this article, we used a myoelectric version of the Pisa/
IIT SoftHand. More specifically, by exploiting the concept of 
synergies that drive concurrent muscle activation, only one 
pair of antagonistic muscles [two surface electromyography 
(EMG) channels from the major finger antagonist pair, i.e., 
the extensor digitorum communis (EDC) and flexor digito-
rum superficialis (FDS)] was used to drive the stiffness and 
postural synergy references tracked by the hand controller, as 
detailed later in this article (see also [17]). The hand is 
mounted over the wrist of a 7 DoF KUKA LWR IV+ arm. 
The position and endpoint stiffness are controlled using the 
techniques detailed in the next section.

Common-Mode and Configuration-Dependent 
Stiffness Principles for Real-Time Tracking of the 
Human Arm Endpoint Impedance
There are several important reasons why humans principally 
explore the control of arm configurations to perform tasks 
that require dynamic dexterity. One explanation for such a 
behavior is the ergonomic efficiency of the postural adjust-
ments in the generation of certain endpoint force manipula-
bility or stiffness profiles in comparison to the muscular  
(co)activations [20]. Another important factor is the major 
contribution of the arm pose to effective modifications in the 
geometry of the endpoint stiffness ellipsoid. The latter can be 
mathematically described by transformations from the mus-
cle stiffness matrix ( )Km  to the arm joint stiffness ( )KJ  and 
consequently to the Cartesian stiffness matrix ( )Kc  by

	 ( , ) ( ) [ ( ) ( )] ( ),K p q J q J q K J q J qc
T

m
T

m m= + + � (1)

with ( , ) ( ) ( ) ( ),K p q J q K p J qJ m
T

m m= t  and ,p q and Km being 
the muscle activation and joint angle vectors and muscle 
stiffness matrix, respectively; the effects of gravity and 
external load are neglected in this equation. The quadratic 
effect of the arm kinematics through arm ( )J q  and muscle 

( )J qm  Jacobians on the Cartesian stiffness matrix is evident 
in this equation.

The tracking of the arm kinematics is achieved through a 
passive marker motion capture system (Vicon) using the con-
cept of arm tangle, as explained in [19]. Three rigid-body 
markers can be attached to the hand, elbow, and shoulder seg-
ments and used for the tracking of the arm Jacobian. Using the 
muscle attachment points [21] and the length variations over 
the joint angles, the muscle Jacobian can be computed online.

The effect of muscle stiffness matrix ( )Km  in joint and 
endpoint stiffness variations is commonly described using 
Hill’s activation dynamic equations, which provide a mapping 
between the muscular activities, usually measured by the 
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EMGs, and the corresponding muscles’ stiffness profiles. This, 
however, requires the EMG activities of several muscles to be 
processed and passed through a complex system of equations 
to account for the muscle stiffness matrix, eventually resulting 
in a costly (requiring several EMG sensors and amplification) 
and computationally intensive system. However, the dense lit-
erature gives solid evidence for the existence of synergistic 
relationships between the arm’s mono- and biarticular muscle 
activities, which realize a coordinated stiffening profile across 
the arm joints [22], [23]. As a result, cocontractions of the 
arm muscles mostly contribute to the modifications in the 
volume of the endpoint stiffness ellipsoid rather than to its 
direction [9]. This strategy is deemed to be exploited by the 
central nervous system to solve for the motor complexity in 
an efficient and coordinated manner [24].

On this basis, in our recent work [19], the concepts of 
common-mode stiffness (CMS) and configuration-depen-
dent stiffness (CDS) were proposed to associate the arm mus-
cular activities and configurations to variations in the volume 
and major axes orientations of the arm endpoint stiffness 
ellipsoid, respectively. To design a real-time arm endpoint 
stiffness model, we presume that 1) a synergistic relationship 
exists between the arm muscle activities and 2) each muscle 
activation contributes to the volume of the endpoint stiffness 
ellipsoid with a different ratio. Accordingly, we propose 

( ) ,K a p Km cc s=t  with Ks  as an experimentally identified, 
time-invariant diagonal matrix that implements the contribu-
tion of each muscle to the active variations of the volume of 
the endpoint stiffness with a certain weight. The scalar and 
time-varying component, ( ),a pcc  which is a function of the 
muscular activities, is multiplied by the muscle weights to 
compute the overall contribution of muscle activations to the 
volume of the endpoint stiffness ellipsoid. Obviously, depend-
ing on the choice of muscles that are used for the computation 
of the active component ( ),acc  the identified scale matrix Ks  
would differ. In this study, we process the EMG activity of 
the biceps brachii (BB) )(PB  and triceps brachii (TB) )(PT  
muscles as the dominant and easily accessible muscles 
of the arm for surface EMG measurements to calculate 

( ) ( ),a p c c P P2cc B T1= + +  with c1  and c2  being constant 
coefficients referring to the intrinsic muscle stiffness compo-
nent. By rearranging the above equations, we obtain

	 ( , ) ( ) [ ( ) ( ) ( )] ( ).K p q J q J q a p K J q J qc
T

m
T

cc s m= + + � (2)

The parameters of such models are subject-specific and 
must be identified offline. To achieve this, as described in 
[19], the endpoint stiffness ( , )K p qc6 @ of the human arm was 
estimated in various arm pose ( )q  and activation levels of the 
arm muscles ( ).P  The stiffness matrix was estimated by 
applying stochastic position perturbations and measure-
ments of the restoring forces. The estimated stiffness matri-
ces and the measured data [muscle activities (P) and arm and 
muscle Jacobians calculated from q] can consequently be 
used for the identification of the model parameters by mini-
mizing the norm

	 ( ) ( ) ( ) ( ) ( , ) ( ) ,J q a p K J q J q K p q J qm
T

cc s m
T

c- � (3)

with , ,J K JR RRm s
8 7 8 8 3 7! ! !# # # , and K Rc

3 3! #  (the 
only translational components of the stiffness matrix). In 
this model, we exploit arm muscle length functions of eight 
dominant muscles acting on the shoulder, elbow, and wrist 
joint to model the moment arms of the muscles as func-
tions of the corresponding joint angles (see [25].) The eight 
selected muscles are the anterior and posterior portions of 
the deltoid, the brachialis, the brachioradialis, the long and 
short portions of the biceps, and the long and lateral por-
tions of the triceps, which present dominant effects in gen-
eration of the torque profiles in the arm joints. Therefore, 
ten unknown parameters ( , , )K c cands 1 2  must be identified 
that define the minimum number of required trials for the 
calibration experiments. Based on this number, the total 
number of trials was divided into the calibration and test 
trials for the validation of the identified model. The identi-
fied matrix Ks  represents the coordinated contributions of 
the selected muscles to the endpoint stiffness variations. 
The other two components, c1  and ,c2  are used for the defi-
nition of the scalar value ,acc  which represents the active 
contribution of muscular activities to the modifications of 
the volume of the endpoint stiffness matrix [19].

Once the model parameters are identified, (2) can be uti-
lized for the real-time computation of the arm endpoint stiff-
ness profile using EMG signals of one antagonistic pair of 
muscles and the tracking of the arm triangle (refer to [19] for 
details). The EMG signals are acquired by the wireless Delsys 
Trigno system (Delsys Inc.) at 1 kHz. The processing (filtering 
and normalization to the maximum voluntary contraction) is 
performed online. The tracking of the arm triangle is achieved 
by 11 Flex-3 cameras of the Optitrack system (NaturalPoint, 
Inc.) by attaching three rigid-body markers to the shoulder, 
elbow, and wrist of the human hand at 100 Hz. Our real-time 
model enables the master to modify the direction of the end-
point stiffness ellipsoid by changing the arm posture in an 
intuitive manner while being capable of adjusting its volume 
by increasing the cocontraction of the dominant arm muscles. 
As a result, teleoperated tasks that require significant modula-
tion of the endpoint stiffness and force can be effectively and 
naturally executed.

A Wearable Approach to the Dynamic Remote 
Control of a Synergy-Driven Robotic Hand

A Wearable HPR System: Optimal  
Design and Undersensing
The position of the Pisa/IIT SoftHand was controlled based 
on the user’s hand posture, which was acquired through a 
wearable sensing glove. This glove [18] was endowed with 
five textile goniometers, which can measure five joint angles 
(see Figure 3). This glove has also been integrated with a tac-
tile sensing glove to provide a tool to retrieve both kinematic 
and force information from the human hand in grasping 
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tasks [26]. Textile goniometers consist of two piezoresistive 
layers connected through an electrically insulating layer. The 
sensing layers of the textile goniometers were fabricated 
using knitted piezoresistive fabrics (KPFs). The output of the 
sensors is the electrical resistance difference computed from 
the two sensitive layers and is proportional to the flexion 
angle (see Figure 4) [27]. In Figure 4, the two external stripes 
represent the piezoresistive layers. The gray line is the electri-
cally insulating layer. The bending angle ( ),i  represented by 
the angle between the tangent planes to the goniometer 
extremities (the black dashed stripe), is proportional to the 
difference of the resistance RD^ h of the sensing layers. The 
distribution of the sensors on the glove was optimal in a 
Bayesian sense, such that it maximizes the information on 
the actual hand posture.

The theoretical work that led to the definition of the 
design guidelines was laid out in [28]: the idea was to exploit 
hand joint covariation schemes in grasping tasks, or hand 
synergies [13] as a priori information to complete a hand 
pose from a limited number of (noisy) measures and, at the 
same time, to decide how and where to place sensors on the 
glove, taking into account the knowledge on how humans 
most frequently use their hands in grasping tasks.

Five KPF goniometers were built and integrated into the 
glove to fulfill the design requirements (i.e., sensor length) 
and to measure the following joint angles, according to the 

kinematic model in [13], i.e., thumb abduction (TA), middle 
metacarpal (MM), ring proximal (RP), little abduction (LA), 
and little metacarpal (LM), respectively. This sensor place-
ment was inspired by the optimal design guidelines in [28]; 
the measurements KPFs provide were then completed 
through synergy-based estimation techniques [29] to obtain 
hand posture reconstruction according to a 19-DoF model. 
More details on the sensing glove can be found in [18].

Kinematic Mapping: From Human  
Hand to Pisa/IIT SoftHand
Once the hand pose of the user is reconstructed, it is used to 
control the position of the Pisa/IIT SoftHand, which is built to 
move without obstacles along the vector of the first human 
postural synergy S (in our case, ),S R19!  which also repre-
sents the reference configuration toward which the real hand 
position is attracted, and at the same time repelled from, due 
to the interaction and grasping with the external object, 
according to the soft synergy model [30]. Since the SoftHand 
is commanded to move along the first human postural syner-
gy, for this experiment, we need to estimate the value of ,v  
i.e., the synergy intensity [30], which should be commanded 
to the SoftHand motor.

Vector S is implemented in the SoftHand through a careful 
design of spring elements and pulley trains, resulting in a 
coordinated closure of all joint angles. To get value v

	 ,S xTv = � (4)

where vector x contains the reconstructed human hand joints.
This value needs to be correlated with the SoftHand 

motor position: to do it, we first get maxv  corresponding to 
the maximum closure of the human hand and relate it to 
motor position (in ticks). The other intermediate v  values 
can be obtained via simple proportion. This reconstruction 
provides an effective way to command synergy-based robotic 
hands and can be extended to systems with more degrees of 
actuation (see e.g., [31]).

TI for Intuitive Control of the Robotic Hand
Following the previously described implementation of TI 
control for the teleoperation of a robotic arm, we explored the 
translation of this approach to the control of a synergy-driven 
robotic hand, the Pisa/IIT SoftHand [17]. The reference con-
figuration commanded to the hand is the difference of the 
two EMG signals from FDS and EDC. These signals were 
acquired through two surface EMG electrodes by Trigno Sys-
tem. To regulate the stiffness of the hand, we used an EMG-
driven P-gain modulation. In other words, the proportional 
gain of the proportional-integral-derivative controller of the 
SoftHand motor position control increased with increasing 
amplitude of the EMG signal with the smallest amplitude, 
normalized to the signal’s highest amplitude. The upper and 
lower bounds for the proportional gain were estimated 
through pilot data by selecting the range of values in which 
the SoftHand moved smoothly until reaching the reference 
position. Accordingly, the SoftHand movement velocity and 

Figure 3. A glove with KPF sensors on the joints of interest 
[18]. LA: little abduction; LM: little metacarpal; MM: middle 
metacarpal; RP: ring proximal; TA: thumb abduction. 
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Figure 4. A representation of a double-layer textile goniometer [18].
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impedance were modified by changing the proportional gain 
value. More details can be found in [32].

Wearable Haptic Device for Force Feedback
To convey information about the grasping force produced 
by the Pisa/IIT SoftHand, we used the CUFF wearable 
device for the distributed mechanotactile stimulation of 
normal and tangential skin forces. The device is described in 
more detail in [16].

The CUFF device can be worn on the user’s forearm and is 
endowed with two independently controlled dc motors. The 
device design is based on an elastic belt wrapped around the 
user’s limb. For this study, the motors spin in opposite direc-
tions to tighten or loosen the band on the arm in accordance 
with estimated grasp force. In Figure 5, the real prototype and 
a three-dimensional rendering of the CUFF system are 
shown, highlighting some details of its mechanical implemen-
tation. The CUFF device weighs ,230 g.  and its overall 
dimensions are . . . .12 4 7 0 5 8 cm# #  

One possible application of the CUFF device is to enhance 
the haptic interaction with the environment, in particular, as a 
haptic feedback device for robotic/prosthetic hands, with the 
goal of achieving better grasp stability by conveying grip force 
information [17]. The Pisa/IIT SoftHand was equipped with a 
custom-made n-controller, which controls the opening/closing 
level of the hand in position by acting on the current that drives 
the motor. The complete scheme of the control is represented 
in Figure 2. The basic idea is to use the hand motor current to 
provide a rough estimate of the applied force to the external 
environment. This approach is motivated by the fact that there 
is a net difference in the motor current, in free motion (with the 
maximum value )800 mA. , or when the robotic hand grasps 
an external object (with the maximum value , ).1 200 mA.  
The CUFF device is then controlled through the residual cur-
rent ,rI  defined as the difference between the current absorbed 
by the SoftHand motor and the current reconstructed. The 
reconstructed current represents the motor current in free 
hand motion, which will be subtracted from the current sensed 
by the n-controller. More details can be found in [16].

Integration and Experimental Tasks
In our experimental setup, we integrated the aforementioned 
techniques, i.e., TI, sensing, and force feedback. We imple-
mented two control loops. One controlled the sensing glove, 
the Pisa/IIT SoftHand (both in position and stiffness), and 
managed the force feedback. The other controlled the KUKA 
robot through a developed Cartesian impedance controller to 
replicate the masters’ arm endpoint trajectories and stiffness. 
EMG signals were acquired by a third computer, which broad-
cast these values over a local wired network. The two control 
loops, running on two distinct computers, took data of interest 
directly from the network. These two loops run at a frequency 
of 100 and 200 Hz, respectively. During the experiments, we 
asked participants to control the pose and stiffness of the Pisa/
IIT SoftHand mounted on KUKA. The arm TI control 
(described in the “The Robotic Hand and Arm System” sec-

tion) was used to command the position of the robotic arm 
and regulate the impedance of the system online. The task 
consisted of grasping a drilling tool and using it to drill a block 
of autoclaved, aerated concrete. The task was considered suc-
cessful if the participant could grasp the tool placed on a table, 
use it to drill the block (to produce a hole with a length of at 
least 4 cm), and remove the drill from the hole.

Ten right-handed volunteers (eight males and two females, 
age 27.4 ± 2.63 years) took part in the experimental tests. All 
participants in these studies gave informed consent to perform 
the experiments. No subjects reported physical limitations that 
would affect their ability to perform the task. The participants’ 
average arm length was 29.47 cm from the shoulder to the 
elbow, with a standard deviation of 2.41 cm, and 24.02 cm 
from the elbow to the wrist, with a standard deviation of 
4.06 cm. The average hand measurements were 10.21 ± 0.93 cm 
wide (measured from the tip of the thumb to the tip of the lit-
tle finger in flat hand posture) and 18.48 ± 0.79 cm long (mea-
sured from the wrist to the tip of the middle finger). For each 
subject, fast calibrations for the sensing glove (see the “Com-
mon-Mode and Configuration Dependent Stiffness Principles 
for Real-Time Tracking of the Human Arm Endpoint Imped-
ance” section) and for the TI controllers for the arm and the 
hand were performed (see the “The Robotic Hand and Arm 
System” and “Common-Mode and Configuration Dependent 
Stiffness Principles for Real-Time Tracking of the Human 
Arm Endpoint Impedance” sections, respectively).

Six experimental conditions were considered: 1) low stiff-
ness (LS), 2) high stiffness (HF), and 3) TI, with and without 
the use of CUFF force feedback. In the LS condition, the 
stiffness of the SoftHand was also low; we set the P-gain of the 
SoftHand controller at 0.005, and the Cartesian stiffness 
of the KUKA robot was set to 800 /N m and 50 /Nm rad  in 
all translational and rotational directions, respectively. For the 
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HS condition, the P-gain of the SoftHand was set to 0.05, 
with the KUKA Cartesian stiffness values of 2,000 /N m  
and 200 /Nm rad  in all translational and rotational direc-
tions, respectively. These represent the lower and upper 
bounds, guaranteeing a stable performance. In the TI condi-
tion, the P-gain and the robot endpoint stiffness profile were 
modulated as described in the “Common-Mode and Config-
uration-Dependent Stiffness Principles for Real-Time Track-
ing of the Human Arm Endpoint Impedance” section.

At the end of the experiments, we asked subjects to 
answer the questions using a seven-point bipolar Likert-like 
scale (see Table 1).

A score of one means completely disagree and seven com-
pletely agree.

Results
As performance evaluation metrics, we considered the success 
in task accomplishment and modulation of EMG signals and 

interaction forces. We will discuss the main experimental out-
comes in this section, considering the effect of TI modulation 
and force feedback. An example of an exemplary trial per-
formed with TI control and force feedback can be found in the 
accompanying video.

Success Rate
In Table 2, we report the success rate for the different condi-
tions. TI exhibits the highest success percentage (83.3%), 
although HS also provides a high success rate (78.3%) with 
respect to (w.r.t.) LS, which has only 60.0%.

We have performed 2
|  nonparametric statistical tests 

considering the relative frequency of succeeding trials 
between the three different experimental conditions (TI, LS, 
HS) and for the two factors (CUFF and no CUFF). With the 
TI condition, the contingency table of observed frequencies 
is associated with a p < 0.085 ( , ),df3 12

| = =  as calculated 
considering the Yates correction for the 2

|  calculation due to 

Table 1. Statements, presented in random order, rated by the subjects  
using a seven-point Likert scale: 1) Strongly disagree through 7) strongly agree.

Questions Median IQR CI m. 95%

1) �I had the feeling of performing better while receiving force feedback from the 
cutaneous device.

6 1 (5,6) 

2) I had the feeling of performing better while modulating the impedance of the end effector. 6 1 (5,7) 

3) I was feeling uncomfortable while using TI with the cutaneous device. 2 0 (1,3) 

4) The TI control was intuitive. 6 0 (5,6) 

5) I felt hampered by the cutaneous device. 2 0 (1,2) 

6) It was easy to move my hand and fingers while wearing the sensing device. 6 0 (4,7) 

7) Please rate your impression of how close the robot behaved as an extension of your body. 6 1 (5,7) 

IQR: interquartile range; CI m.: confidence interval median.

Table 2. The success of task accomplishment for the different conditions.

Subject TI (%) LS (%) HS (%)

CUFF No CUFF CUFF No CUFF CUFF No CUFF

1) 100.0 100.0 100.0 100.0 66.7 100.0

2) 100.0 66.7 100.0 66.7 100.0 100.0

3) 66.7 33.3 66.7 0.0 66.7 100.0

4) 100.0 100.0 33.3 0.0 33.3 66.7

5) 100.0 66.7 33.3 0.0 100.0 66.7

6) 100.0 66.7 100.0 33.3 100.0 0.0

7) 100.0 100.0 100.0 100.0 100.0 66.7

8) 66.7 0.0 33.3 0.0 66.7 66.7

9) 100.0 100.0 66.7 66.7 100.0 66.7

10) 100.0 100.0 100.0 100.0 100.0 100.0

Total 93.3 73.3 73.3 46.7 83.3 73.3

Total group 83.3 60.0 78.3
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the low value of expected frequencies, meaning that in this 
experimental condition, the use of the CUFF device tends to 
increase the chances of success trial rate. Nevertheless, we 
can only claim this trend because of the formal acceptance of 
the null-hypothesis considering a statistical significance of 
5%. Likely, a higher number of subjects involved in our 
experimental protocol would allow us to reach a proper sta-
tistical significance.

For LS, the contingency table of observed frequencies 
is associated with a p < 0.05 ( . , ,)df4 44 12

| = =  meaning 
that in this experimental condition, the use of a CUFF device 
significantly increases the chances of success trial rate. This 
could be ascribed to the lower force produced by the Soft-
Hand, in this case, compared to the other two. In this condi-
tion, the information conveyed by the CUFF is essential to 
make the subject aware that the control he/she is exerting is 
not sufficient for lifting, carrying, and handling the driller 
and, hence, can increase the grasping force for a successful 
task completion.

Considering the HS condition, the contingency table 
of observed frequencies is associated with a p > 0.05 
( . , ),df0 884 12
| = =  meaning that, in this experimental con-

dition, the use of the CUFF device does not increase the 
chances of success trial rate. This may be because, in the HS 
condition, the proportional gain of the SoftHand control is 
very high, resulting in fast and strong hand movements. These 
movements generate high grasping forces that can be regulated 
for difficulty even with the usage of the CUFF device.

Importantly, regardless of the experimental condition, the 
contingency table of observed frequencies is associated with a 
p < 0.005 ( . , ),df8 32 12

| = =  demonstrating that in a gener-
ic scenario the use of the CUFF device significantly increases 
the chances of success trial rate.

We then investigated differences in the trial success rate 
regardless of the use of the CUFF device. In this case, the con-
tingency table of observed frequencies is associated with a 
p < 0.01 ( . , ),df9 39 22

| = =  meaning that the specific 
experimental condition does influence the trial success rate. 
We then performed an 2

|  post hoc test considering Bon-
ferroni correction of the statistical significance, observ-
ing that the TI significantly increases the change of trial 
success rate with respect to the LS condition (p < 0.005, 

. , ).df8 04 12
| = =  Other multiple comparisons do not reach 
the formal statistical significance (as associated with corrected 
p > 0.05), although it is worthwhile noting that the LS versus 
HS comparison is associated with a corrected p < 0.06 
( . , ),df4 73 12
| = =  meaning that the HS condition tends to 

increase the change of the trial success rate with respect to the 
LS condition. The nonstatistical difference between TI and 
the HS condition could be explained by the fact that, for this 
task, the HS condition generates very precise movements that 
lead to a successful trial execution. However, the integrated 
usage of TI and the CUFF device produces a different modu-
lation of the interaction forces, which are generally lower w.r.t 
the HS case and suitably adapted to the different phases of the 
trial. This would result in safer interactions and would be like-

ly to produce reduced fatigue in subjects during longer tasks 
(see the “Interaction Forces” section).

Subjective Evaluation
The scores provided by ten participants, which were ana-
lyzed through descriptive and inferential statistics, are 
reported in Table 1, along with the relative data from the sta-
tistical analysis. Question 7 refers to the TI condition with 
CUFF feedback. 

Analyzing the data, we can conclude that the cutaneous 
device and TI increase subjective evaluation of task perfor-
mance (questions 1 and 2). Participants had the impression 
that they performed better when TI control and force feed-
back were provided. Furthermore, the integration of TI and 
the CUFF device was perceived as comfortable by the sub-
jects, who did not feel hampered by the cutaneous device 
(questions 3 and 5). The sensing glove for HPR was evaluated 
as highly wearable, imposing minimal constraint to finger 
and hand movements (question 6). Regarding the transparen-
cy of the system to the user (question 7), the users rated the 
perception of the robot as an extension of their body when TI 
and CUFF were used together, providing a very high score.

EMG Modulation and Hand Interaction Forces
This section reports on the effect of feedback (CUFF 
device) on the modulation of EMG signals of the EDC 
and FDS muscles and the consequent grasping forces. Fig-
ures 6 and 7 illustrate the typical results of the EMG activ-
ities and the corresponding grasping interaction forces of 
the SoftHand under TI control with and without the hap-
tic feedback, respectively. As observed, the haptic inter-
face enables the user to effectively modulate the EMG 
activities and the grasp forces to achieve a stable grasp in 
different phases of the task.
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Figure 6. The modulation of the EDC and FDS signals and 
SoftHand grasping force (expressed in terms of residual current) 
when the user (Subject 1) did not use the CUFF device. 
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EMG Modulation and Endpoint  
Stiffness (Changing the P-Gain)
This section illustrates the results of the regulation of the 
robot endpoint stiffness through control of CMS (contribu-
tion of muscular activations) and CDS (through arm geome-
try). The effect of varying the hand stiffness (by changing the 
P-gain) and the Cartesian stiffness profiles of KUKA can be 
assessed on the dynamic performance of the system. We do 
not expect to see any performance degradation using various 
P-gains or Cartesian stiffness profiles in terms of trajectory 
tracking in free space (assuming a reasonable compensation 
of system uncertainties such as friction). Nevertheless, the 

force response of the two systems (hand and robot arm) to 
the environmental displacements would clearly differ and be 
determined by the choice of the parameters.

The objective here is to illustrate that certain endpoint 
impedance profiles and, hence, gains (for hand and KUKA), 
provide the best performance for certain physical interaction 
scenarios, as is the case of a drilling task. Thus, since the best 
performance relies on the choice of gains, we use a human-in-
the-loop system to intuitively tune them online. The typical 
results of the TI control with haptic feedback are illustrated in 
Figure 8(a) and (b) for two typical subjects, respectively. As 
illustrated in the plots, the operators could modulate the vol-
ume of the Cartesian stiffness profile (a coordinated increase 
in the matrix components) by applying cocontractions in dif-
ferent phases of the task.

In addition, in robotic arm control, if the control of the 
endpoint stiffness geometry was necessary, then the pro-
posed method enables the operator to use the effect of con-
figuration to intuitively modulate the stiffness in certain axes 
of the Cartesian stiffness (e.g., while drilling, the arm is 
extended on x direction to achieve a stiffer profile in x even 
in small muscular activation levels). Hence, potential mis-
alignments in other directions would not achieve unneces-
sary high-interaction forces. This explains the change of 
endpoint stiffness in similar activation levels of the muscles 
but different arm poses of the operator. The operator’s ability 
to modulate the endpoint stiffness of the KUKA robot (and 
the consequent restoring forces) according to the needs of 
the task led to an increase in the success rate.

Interaction Forces
Figure 9 illustrates typical acquired interaction forces at the 
KUKA end effector for the three control modes (LS, HS, and 
TI) during the drilling task. As observed in the plots, while 
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SoftHand grasping force (expressed in terms of residual current) 
when the user (Subject 1) wore and used the CUFF device.
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interaction forces are low in the LS case, the time of the exe-
cution is very long compared to the rest of the modes. The 
HS case, however, achieved an unnecessary high-interaction 
force in directions other than drilling (e.g., in y direction), 
which could cause damage to the tool or the environment. In 
the TI case, the TI control mode enables the regulation of 
interaction forces according to the task phase and its require-
ment, as depicted in Figure 9.

Conclusions and Future Works
In this article, we discussed the results of human–robot tele-
operation in a cooperative object manipulation task, leverag-
ing a wearability paradigm and the generalized simplification 
approach of human synergies. The task was a drilling task, 
during which a human user was required to teleoperate a 
robotic synergy-inspired hand–arm system equipped with the 
Pisa/IIT SoftHand to grasp and use a driller. A successful task 
accomplishment required advanced action perception skills, 
which include both knowledge about the object properties 
and the execution of motor primitives without increasing the 
complexity for sensing and control on the robotic side.

To perform this action, we developed a system that inte-
grates in a coherent manner undersensing and wearable haptic 
feedback devices and augmented teleoperation methods based 
on TI, which enabled us to safely simply and stably control the 
position and stiffness of a robotic hand and arm system in the 
synergy space. Results from a preliminary experimental vali-
dation carried out with human participants show that the 
usage of TI and force feedback seems to increase the success 
rate and was perceived by participants as a highly valuable and 
intuitive aid for task accomplishment. The TI mode with hap-
tic feedback enabled subjects to effectively regulate EMG sig-

nals and the interaction forces of the Pisa/IIT SoftHand. 
Furthermore, the wearability of the sensing glove used to control 
the position of the robotic hand along the first human grasping 
synergy was perceived by participants as significantly high. It 
can be concluded that the presented system seems to increase 
effectiveness, intuitiveness, and comfort during collaborative 
tasks performed by a human user and a robot, ensuring stabili-
ty and the naturalness of HRI for synergy-inspired artificial 
devices. It is also important to observe that these techniques 
can be successfully applied and extended to robotic devices 
with additional degrees of actuation, enabling a simplified and 
effective human–robot communication.

Future works will focus on further testing this system 
with a greater number of participants and evaluating other 
modalities for HPR (e.g., visual based), as well as the effect 
of other feedback modes (e.g., vibrotactile). The wearability 
of the overall system will also be pushed further. Envisioned 
applications include medical robotics, entertainment, and 
amusement as well as teleoperation in hazardous and 
remote environments.
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