
SoftHandler: An Integrated Soft Robotic System
for the Handling of Heterogeneous Objects

Franco Angelini1,2,3, Cristiano Petrocelli2, Manuel G. Catalano2,
Manolo Garabini1,3, Giorgio Grioli2 and Antonio Bicchi1,2,3

Abstract— The picking performance of a robot can be
severely affected by measurement errors, especially when han-
dling objects that are fragile or irregular in shape and size. This
is one of the main reasons why the problem of autonomously
picking and placing objects is still open. In this work, we
exploit the “embodied” intelligence of soft robotic technologies
to propose an integrated system, named SoftHandler, capable
of overcoming some of the limitations of traditional pick-and-
place industrial robots. The SoftHandler integrates a novel
parallel soft manipulator, the SoftDelta, and a novel soft end-
effector, the Pisa/IIT SoftGripper. We describe the mechatronic
design and control architectures of the system, including a
learning technique able to preserve the natural compliance
of the system. After that, we design a benchmarking method,
and we experimentally compare the developed soft manipulator
with its rigid counterpart. Experimental results with reference
objects show that the proposed system has a larger grasping
success rate than the rigid one and is subject to smaller
interaction forces during the picking phase. Finally, we report
an extensive experimental validation of the grasping capability
of the SoftHandler with real objects in realistic, physically
simulated, scenarios, as the ones of bin picking, grocery and
raw food handling.

I. INTRODUCTION

Modern robotic technologies shine in picking and placing
tasks where objects are orderly presented. However, rigid
robots still provide unsatisfactory solutions when grasping
and manipulating objects with a partially unknown geometry,
or that are randomly placed in an unstructured environment.
Traditional rigid robots may, indeed, drop or damage the
manipulated objects and the possible occurrence of acci-
dental impacts may also damage the robot itself. Inspired
by biological systems, soft robots (both soft continuum [1]
and soft articulated [2]) are system embedding compliant
elements within their design. Such systems show an adaptive
behavior, which is particularly useful when interacting with
unknown objects [3] or unknown environments [4] and are
robust to impacts [5]. In this work, we propose to exploit
the properties of articulated soft robots to develop a device
merging a soft manipulator and a soft end-effector that can
be suitable in a set of scenarios characterized by imprecise
knowledge of the position, shape and weight of movable
objects and environment.
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Fig. 1. The SoftHandler: a soft articulated robotic system integrat-
ing a parallel delta manipulator, the SoftDelta, and a four fingers
gripper, the Pisa/IIT SoftGripper.

Examples are bin picking, waste sorting and handling of
groceries or raw food, in general. Being able to automate
these processes is of particular importance since they involve
several aspects that could be damaging for human beings.
Indeed, they are highly repetitive tasks that may force
operators to work in hazardous environments like refrigerated
cells or in contact with sharp or unhealthy items.

Looking at these common logistic tasks, and how humans
perform them, top-down grasping approaches are usually
favored for several reasons that include also the typical layout
of factory lines. During top-down grasps human beings tend
to completely envelop with the fingers the object to be
grasped [6], [7]. This movement is commonly known as
caging primitive, and it is the same performed also by many
conventional robotic solutions. It is also worth mentioning
that human beings, during the top-down approaching phase,



tend to have many interactions with the environment, e.g.
with the planar surface where the object is placed, in order
to realize better grasps, as fruitfully highlighted in [6], [7].

Inspired by these observations, in this paper we pro-
pose an integrated system, named SoftHandler, capable of
overcoming some of the limitations of traditional pick-and-
place industrial robots, also in presence of limited vision
information. Furthermore, we discuss and present the control
architecture that underpin such integration, showing and
benchmarking its performance in both simulated and realistic
scenarios.

For the manipulator, we adopt a parallel delta kinematics
[8]. The delta configuration is already very common in
industry, ensuring fast and precise motions. The design of
the robot will be based on Variable Stiffness Actuators
(VSAs) [9]. VSA technology allows either a soft behavior,
when robustness and adaptivity are preferred, or a rigid
behavior, when accuracy and precision are needed. In [10],
the authors employed an early proof-of-concept of a VSA
delta robot as an experimental platform to validate a specific
control algorithm. However, no description of its design nor
validation of its performance were reported. Moreover, this
prototype had a small size and a very limited payload and
was not equipped with any end-effector. In this work, we
leverage on this past experience to propose a novel VSA delta
robot, the SoftDelta, with larger workspace, higher dynamic
performance and higher payload, opening, as a consequence,
the possibility to integrate the system with a suitable robotic
end-effector.

In [4], [11] it is shown that soft end-effectors can exceed
the limits of traditional rigid grasping systems. Their care-
fully designed mechanical transmissions for safe interaction,
high resilience and intrinsic adaptivity, yield gentle but
firm grasp of objects with very different shape, even when
the environment is partially constrained or not completely
known. Literature proposes a wide range of soft end-effectors
ranging from continuously deformable grippers ([12], [3],
[13]) up to articulated soft systems ([14], [15], [16]). The
end-effector presented in this paper is an articulated soft
gripper inspired by the Pisa/IIT SoftHand [2] technology.
This device has a simple design, which is particularly suited
for top-down pick-and-place tasks performed e.g. with a delta
manipulator. Furthermore, the gripper preserves a low level
of control complexity thanks to the presence of only one
motor, and a high level of robustness. It is worth noting
that a device with similar appearance as the SoftGripper but
different design, was shown in [17]. In that paper, mostly
devoted to describing the waterproofing of underwater grasp-
ing devices, the gripper was not the subject of any detailed
description or analysis. Indeed, the actuation solution, the
field of use and the planning approach were completely
different, and problems discussed in this paper have not been
addressed previously.

In this work, we present the SoftHandler, a device for
heterogeneous pick and place tasks that integrates a novel
parallel soft manipulator, the SoftDelta, and a novel soft
end-effector, the Pisa/IIT SoftGripper. In addition to the

mechatronic characteristics of the SoftHandler components,
we provide a theoretical analysis of the Cartesian stiffness
of the manipulator and we describe and validate the control
architecture of the entire system, showing also how learn-
ing control techniques can preserve its natural compliant
behavior. Then, we compare the manipulator with its rigid
counterpart, showing how the proposed solution can be
exploited in order to obtain better performance in terms of
grasped objects, merged to reduced effects of impact forces
on the items and on the robot actuation structure. This is
one of the few cases in literature which presents a direct
juxtaposition of an articulated soft robot with a comparable
traditional rigid robot, and that analyzes and discusses their
performance. Finally, to validate the system, we test the
SoftHandler (combined with a minimalistic vision system),
in realistic use case scenarios, including bin picking, grocery
and raw food handling. Obtained results show promising
performance, in terms of grasping success rate, versatility
and object integrity.

The paper is organized as follows: in Sec. II we discuss
about issues related to traditional rigid robots, taking some
examples of industrial scenarios. In Sec. III we describe
the design and the control methodologies of the developed
device. In Sec. IV we characterize the proposed system, and
we benchmark its grasping performance in comparison with
its rigid counterpart. In Sec. V we show how the SoftHandler
performs in realistic, physically simulated, scenarios, and we
discuss results. In Sec. VI we discuss about the performance
and failures of the proposed system. Finally, in Sec. VII we
draw the conclusions.

II. THE CHALLENGE

In order to define the outlines of the problem, we start
by reviewing some relevant examples of unsolved industrial
pick-and-place tasks, and we discuss the main challenges to
be addressed.

In bin picking (Fig. 2(a)) objects are homogeneous but
often present complex geometrical shapes and are placed
with random orientations. Furthermore, the presence of bin
walls and other fixtures may hinder robot motion or cause
undesired collisions. In grocery handling for packaging (Fig.
2(b)), a very common example in the recent practice of
dark storing, the goods are well organized, but they come
in a wide variety of shapes, textures, weights and sizes,
they are often delicate and can be easily damaged by
improper manipulation. In raw food handling after harvesting
(Fig. 2(c)), as in grocery handling, the shape, weight, size,
orientation and stiffness of the objects differ extensively.
Furthermore, raw food is usually placed into crates without
any particular organization. Finally, waste sorting (Fig. 2(d))
is an example where irregularity and randomness of the
objects are extreme, as are the physical properties (density,
weight, shape, stiffness etc.) of items such as cardboard,
packaging materials, glass fragments, hard pieces of scrap
metal or wood.

All these cases share the possible issue of inaccuracy in
the detection of the object pose. This may cause a grasp to



(a) Bin picking. (b) Grocery handling.

(c) Raw food handling. (d) Waste sorting.

Fig. 2. Examples of industrial pick-and-place tasks that can benefit
from the use of soft robots. Handling heterogeneous, unordered
or fragile objects is a challenge yet hard to be accomplished by
traditional rigid robots.

fail, or in some cases, can generate large interaction forces
that can damage the robot or the object. It is relevant to
highlight how these different contexts of use can present
several possibilities in terms of object placement. Sometimes,
also in the same context, objects can be placed randomly or
in a fixed and predefined configuration. This is the case, for
example, of food handling in dark stores. In this scenario,
objects can be disposed in bins randomly (as e.g. courgettes
or bananas) or with specific grids (as e.g. apples or peaches).
Such variability is one of the leading factors for the need of
versatile handling systems.

In recent years, these tasks are getting more and more
attention by the robotic community. Soft Robotics Inc.1

develops soft grippers for bin picking and raw food handling,
while Ocado2 proposes solutions for raw food and grocery
handling. Amazon Robotics3 sets challenges for improving
technologies for grocery handling. ZenRobotics Ltd.4 de-
signs waste sorting systems. Pick-it N.V.5 develops vision
system for bin picking tasks.

In this work, although we present results also in the field
of grocery handling and bin picking, we will especially focus
on raw food handling, applying the proposed system, mostly,
to this scenario. In the state of the art there are several
investigations related to this topic [18], [19], [20]. In [20] a
robotic system for the manipulation of onions and artichokes
is presented, the robot consists of a rigid delta robot with a
vacuum suction cup. The differences with our solution are
that our manipulator has flexible joints, thus is able to exert

1https://www.softroboticsinc.com/
2https://www.ocadotechnology.com/
3https://www.amazonrobotics.com/
4https://zenrobotics.com/
5https://www.pickit3d.com/

lower interaction forces. Furthermore, the end-effector they
employ is specifically designed for onions and artichokes,
while our solution can be applied to several different objects
and does not rely on suction systems, thus it does not require
pressured air to function.

It is worth noting that, historically, suction grippers have
been broadly used in the contexts discussed in this paper,
anyway, such systems present limits when grasping porous
objects as fresh fruit and vegetables, or objects with slippery
surfaces, as the ones that can be present in waste sorting
scenarios (i.e. presence of humidity or dust) or bin picking
(i.e. presence of oils or moistures). Moreover, often, suction
grippers need different design or control strategy depending
on the item-to-be-grasped.

In order to grasp heterogeneous objects and develop
versatile systems, it is authors’ opinion, that an adaptive
fingered gripper is preferable to end-effectors based on
suction technologies.

III. SOFTHANDLER DESIGN

The SoftHandler is obtained by the combination of a novel
soft articulated end-effector, the Pisa/IIT SoftGripper, and of
a novel parallel manipulator equipped with soft actuators, the
SoftDelta. The entire system is then mounted on a 1×1×1m
rigid structure. In the following, we describe the design of
each component, and we present and discuss the control
architecture and the different control algorithms that can
be employed on the system, considering also the different
circumstances and scenarios of use.

A. Pisa/IIT SoftGripper

Simplicity (i.e. under-actuation), robustness and adaptivity
(i.e. softness and compliance) are the main features that led
to the development of the Pisa/IIT SoftHand [2]. The same
driving ideas underlie the design of the Pisa/IIT SoftGripper
(Fig 3(a)): the 12 DoFs (Degrees of Freedom) which make up
this device are driven by only 1 DoA (Degree of Actuation),
while the embedded elastic elements guarantee a behavior
compliant to the environment and robust to external forces.

Although the SoftGripper shares some of the basic com-
ponents of the Pisa/IIT SoftHand (e.g. compliance through
underactuation), it is completely different in most respects,
including the kinematics, number and length of the fingers.
While the SoftHand was designed for reproducing the first
synergy observed in human grasps and has an architecture
particularly suited for versatile grasping, the SoftGripper
is inspired to the caging primitive [6], [7], i.e. a grasping
approach where the object is fully enveloped by the fingers.
Furthermore, the different kinematics and longer fingers of
the SoftGripper allow to grasp larger objects.

The Pisa/IIT SoftGripper is composed of four fingers
placed in a cross configuration, exhibiting an axial symmetry.
The employed fingers are a derivation of the ones used
in the Pisa/IIT SoftHand ([2]). Each of them is composed
of a series of four modular phalanges connected through
a revised compliant version of the Hillberry rolling joint
that enables a soft and safe behavior, and allows to recover



(a) 3D CAD model.

(b) Fingers size and configuration.

(c) Tendon routing. (d) Gripper section.

(e) Tiny object. (f) Large object. (g) Uneven object. (h) 20kg weights.

Fig. 3. (a) 3D CAD model of the SoftGripper. (b) Fingers design and configuration. The fingers size and orientation permits to grasp
heterogeneous objects. (c) The tendon routing of the differential mechanism ensures a synchronized closure of the fingers. (d) Three-
dimensional section of the CAD model. In the figure are highlighted the phalanges, the prime mover, the electronic board, the encoder, the
motor pulley and the tendon. (e) SoftGripper grasping a tiny reel (∅20×20mm). (f) SoftGripper grasping a large box (210×115×110mm):
the design of the fingers enables the dis-articulation of the phalanges that permits to grasp objects larger than the gripper envelope volume.
(g) Softgripper grasping a rock with uneven surface and geometry. (h) SoftGripper lifting 20kg.

from fingers overextension. The SoftGripper has proximal
phalanges longer than the SoftHand, increasing the size span

of the graspable objects. Fig. 3(b) shows the size and the
orientation of the fingers. Each finger is 96mm long and



(a) 3D CAD model. (b) Link size.

(c) qbMove Advanced 3D CAD model.

(d) Main feautures of qbMove Advanced actuator.

Fig. 4. Characteristics of the SoftDelta. (a) SoftDelta 3D CAD
model. (b) Link size and orientation. (c) Details of the actuator.
The agonist-antagonistic mechanism basing the variable stiffness
structure is clearly visible in figure, while the prime movers and
the electronic board are covered by the external frame (black
color). (d) Nominal characteristics of the variable stiffness actuation
mechanism.

leans 30deg outside the vertical to the palm. The palm of
the gripper has a diameter of 80mm leading to a distance
of ∼160mm between the tip of two opposite fingers when
the gripper is fully open. This design produces a grasping
volume that equals an 80mm diameter sphere.

The actuation of the gripper is carried out through a
differential transmission based on a tendon-pulley mecha-
nism. A single Dyneema tendon distributes the motion of
the prime mover to all 12 joints. The careful regulation
of the elastic elements and of the tendon routing (Fig.
3(c)) ensures a synchronized closure of all the fingers. The
actuator is a 15Watt Maxon motor DCX22S with a GPX22
gearhead (reduction ratio 83 : 1), equipped with two 12
bit magnetic encoder (Austrian Microsystems AS5045). The
actuator, together with the embedded electronic board ([2]),
are placed under the gripper palm (Fig. 3(d)). Fig. 3(d)

highlights the main components of the device, in particular
how the tendon is connected to the prime mover through a
pulley. The total weight of the gripper is 590g.

The SoftGripper is equipped with an off-the-shelf glove
with padded rubber surfaces in such a way to increase
contact grip and compliance. Furthermore, thanks to the
glove, all the grooves and openings on the fingers are
covered, achieving one of the main requirement for food
grippers: hygienic performance [18]. Indeed, the glove avoids
collecting moisture and small particles of food material and,
since it is removable, it is also easy to wash and clean.

Finally, it is worth noting that food handling tasks may
involve also the presence of water or humidity. Since fingers
of the Pisa/IIT SoftGripper do not incorporate any sensor
or electronics, they are able to work well also in wet
environments, indeed control and power electronic boards
are protected and covered by the gripper frame. Fig. 3(e-h)
show the SoftGripper grasping various objects with different
size, shapes and weights. Thanks to the compliant design of
the fingers, the proposed device is able to grasp small objects
and objects larger than the designed gripper workspace.
Fig. 3(e) shows the developed device picking a tiny reel
(∅20× 20mm), while Fig. 3(f) shows the gripper grasping
a large box (210× 115× 110mm), larger than the gripper
envelope volume. Fig. 3(g) depicts the gripper grasping a
rock with uneven surface and geometry. Finally, Fig. 3(h)
shows the SoftGripper lifting a 20kg weight. More examples
are reported in the attached video footage.

B. SoftDelta

The SoftGripper alone is not enough to guarantee a
damage-free manipulation as the robot mounting the gripper
can also be responsible for large interaction forces. Focusing
on adaptability and robustness, we developed a parallel soft
manipulator. The idea is to employ a parallel architecture
to reduce the ratio between the mass of the robot and the
mass of the payload. On the other hand, the compliance of
the joints works as a low-pass filter for interaction forces
between the robot and the object to be grasped. Thus, it
allows to preserve the object integrity and to increase the
robot adaptability, hence enhancing the grasping capability.

The SoftDelta is composed of three VSA-powered kine-
matic chains that connect the base of the robot to the
common end-effector (Fig. 4(a)). The three legs are identical
and present a series of three joints, i.e. one revolute and two
universal joints. The revolute joint is attached to the fixed
base and is the only active joint. The second link of each
kinematic chain has a parallelogram structure that allows the
implementation of the two universal passive joints. Indeed,
each universal joint is composed of three non-collocated
revolute joints. Fig. 4(b) reports the size of the SoftDelta
kinematic chains. Notoriously, the closure of the kinematic
chains of the delta robot limits the end-effector movements
to pure translation in the XYZ directions, making this kind
of robot particularly suited for top-down grasping tasks.

The adopted VSA units are the qbmoves Advanced (Fig.
4(c)), a derivation of the VSA-CubeBot [2]. These are mod-



ular actuators with limited power (15Watt), mainly intended
for research purposes. Fig. 4(d) reports the main features
of these devices. The qbmove Advanced implements an
agonistic-antagonistic mechanism (Fig. 4(c)): the output shaft
of each actuator is connected through a non-linear elastic
transmission to two motors. Moving the motors in opposite
directions leads to a variation of the compliant behavior
of the robot. Each qbmove Advanced is equipped with a
custom electronic board [2] which implements the low-level
control (PID) of the motors. The same board is used to
connect in series multiple qbmove units with a daisy-chain
topology. The position of each motor and of the output
shaft is measured with a AS5045 magnetic encoder, with
a resolution of 12 bit.

The spring characteristic of the actuator is

τ = k1 sinh(a1(q−θ1))+ k2 sinh(a2(q−θ2)) (1)
σ = a1k1 cosh(a1(q−θ1))+a2k2 cosh(a2(q−θ2)), (2)

where τ ∈R is the elastic torque, σ ∈R is the joint stiffness,
q ∈ R is the link position, and θ1 ∈ R and θ2 ∈ R are
the positions of the two motors embedded in the VSA.
The model parameters6 are k1 = 2.6Nmm, a1 = 9rad−1,
k2 = 1.1Nmm and a2 = 9rad−1.

The 0rad reference position of each actuator is the one
depicted in Fig. 4(b), i.e. an angle of π

4 rad between the base
of the robot and the actuator link. A positive turning angle
of the actuator leads to a lifting of the link.

Given (2), it is possible to define the joint stiffness matrix
KJ ∈ R3×3 as

KJ =

σ1 0 0
0 σ2 0
0 0 σ3

 , (3)

where σi ∈ R is the stiffness of the i−th actuated joint.
Varying the stiffness of the joint through (2) allows to shape
the Cartesian stiffness of the manipulator. In particular, the
Cartesian stiffness KC ∈ R3×3 is defined as [21]

KC =−∂we

∂x
=−∂J−T τ

∂x
= J−T KJJ−1− ∂J−T

∂x
τ, (4)

where we ∈ R3 is the wrench applied at the end-effector,
x∈R3 is the Cartesian displacement, q∈R3 is the vector of
the joint positions, and τ ∈R3 is the vector of the actuation
torque. J(q) = ∂we/∂q ∈ R3×3 is the Jacobian matrix of
the manipulator. This can be evaluated differentiating the
kinematics of the system. The direct kinematics, computed
through the three spheres intersection algorithm, and the
inverse kinematics, geometrically evaluated, are reported in
[22]. Eq. (4) can be used to estimate the interaction forces
due to a displacement of the end-effector caused by the
environment.

C. Control Description
From a control point of view, literature proposes a wide

range of techniques to control articulated soft robots. Ex-
amples are [23] where the authors employ a backstepping

6https://qbrobotics.com/wp-content/uploads/2016/03/qbmove-Advanced-
datasheet.pdf

based algorithm, or [24] where a feedback linearization based
technique is presented.

The major drawback of all these methods is that they
are strongly model-based, thus they require an accurate
knowledge of the system, which is usually hard to obtain
in soft robots. Moreover, model-based feedback techniques
usually replace the system physical dynamics with a de-
sired one, nullifying the advantages obtained by embedding
physical compliance in the robot. This phenomenon is even
more pronounced in model-free high-gain feedback methods,
which have the drawback of increasing the joint stiffness
hindering the mechanical impedance of the system [10].

A solution to all these issues is employing a feedforward
learning technique. Indeed, the learning process allows to
improve the tracking performance despite the inaccuracy of
the robot model, while the feedforward architecture allows
the desired compliance preservation. Among all the possi-
ble frameworks, Iterative Learning Control (ILC) allows to
increase the tracking performance through the repetition of
the task, exploiting the experience accumulated during past
trials.

In [10] a feedforward control method based on an ILC
approach is presented. This solution merges a low-gain feed-
back component and an iteratively refined feedforward term.
Given a desired joint reference q̂ ∈ R3, this technique leads
to a position control action u ∈ R3 able to simultaneously
maintain the natural behavior of the system, while achieving
satisfying tracking performance with limited knowledge of
the robot model. The controller has a decentralized architec-
ture, and the control law applied to the i−th joint is

ut
i = ut−1

i +Kup,i et−1
i +Kfb,i et

i , ∀i = 1 . . .3 , (5)

where ui ∈ R is the control input of the i−th joint, ei =
[q̂i, ˙̂qi]

T− [qi, q̇i]
T ∈R2 is the i−th joint tracking error signal,

and Kup,i ∈ R1×2 and Kfb,i ∈ R1×2 are the i−th joint update
and feedback gain matrices respectively. t is the iteration
index, thus et

i is the error signal at the current iteration
(i.e. feedback), while et−1

i is the error signal at the previous
iteration.

The feedforward term at the first iteration u0
i is chosen

based on an approximation of the robot dynamics. We con-
sider each joint as decoupled, and we identify the dynamic
parameters through a step response approach. Despite the
rough estimation of the robot model, the learning phase
allows to achieve good tracking performance. Indeed, the
convergence of the iterative method is guaranteed thanks to
a proper setting of the gain matrices Kup,i and Kfb,i. Finally,
Kfb,i is designed through a Linear Quadratic Regulator (LQR)
method. Since the resulting feedback component Kfb,iet

i is
small, the robot compliance results substantially unaltered.
Please refer to [10] for more details about the control
algorithm.

The major drawback of an ILC-based technique is that
each desired trajectory requires a distinct learning process.
This means that, if the task requires to move freely inside the
device workspace, each possible motion with each possible
payloads should be learned beforehand. This solution is so



(a) SoftHandler. (b) Rigid Delta robot.

Fig. 5. Experimental devices: (a) SoftHandler (b) Rigid Delta. Both devices have equal size and are equipped with a SoftGripper and an
ATI mini 45 force/torque sensor. In the detail of (b) is depicted the actuator of the Rigid Delta robot. The electronic board, the prime
mover and the encoder are clearly visible in the figure .

time-consuming to be often impracticable, thus generaliza-
tion method should be adopted. Future works will focus
on the generalization of the learned control action w.r.t. the
desired trajectory.

For these reason, for the tasks not involving fixed end-
effector trajectories we adopt a feedforward approach based
on the inverse kinematics of the robot. This is flanked by
a low tuned PID controller to increase the tracking perfor-
mance. This approach presents lower tracking performance
and an alteration of the system joint stiffness proportional to
the feedback proportional gains.

IV. SYSTEM CHARACTERIZATION

In this section we characterize the SoftHandler system, in
terms of grasping performance and forces exchanged with
the object and the environment. To this end, we establish
a benchmarking method, and we build a rigid system with
comparable kinematics and actuation power. Furthermore,
forces obtained at the end-effector are compared to to the
ones estimated by the Cartesian stiffness model.

A. Grasping Performance

To establish a baseline for the evaluation of the Soft-
Handler performance we developed a benchmark task, and
we did a comparison with an equivalent rigid manipulator
based on the same architecture of the SofDelta but actuated
by rigid motors. We specifically designed the benchmark-
ing manipulator in order to have two systems with equal
kinematic structures and analogous actuation performance,
i.e. the motors have the same power of the ones used in the
SoftDelta. Indeed, as highlighted by (4), different kinematics
would lead to different mapping of the joint stiffness into
Cartesian stiffness, biasing the analysis. In this experiment
both manipulators are intentionally equipped with the same
soft end-effector, i.e. the Pisa/IIT SoftGripper. The reason
behind this choice is twofold. First, the goal of the proposed
device is to be able to handle fragile and heterogeneous

objects without damaging them. Thus, a rigid gripper would
not be able to satisfy the fragile object requirement. Indeed, it
is well known in the literature that soft end-effectors shows
better performance in grasping fragile and uneven objects
[4], [11]. The second reason for the choice of the same end-
effector is to highlight the differences due to the actuation
mechanism rather than on the overall device.

1) The Benchmark: The performed task is grasping spher-
ical objects with different size and weight. The goal of this
benchmark is to compare the performance of the SoftHandler
(Fig. 5(a)) with the performance of a rigid manipulator
in terms of grasping acquisition region [11] and applied
contact forces when an undesired displacement between the
robot end-effector and the object to-be-grasped occurs. This
issue may arise in several scenarios, e.g. when there are
trajectory tracking errors or measurement inaccuracies due to
the vision system. In order to objectively test the performance
in presence of a displacement between the end-effector and
the object, we try to grasp the same object without any vision
system support, tracking the same trajectory but varying the
object position.

After each trial, the object is moved in the XY plane,
changing the displacement from the end-effector. This proce-
dure is performed employing a plate with holes as reference
frame (sketched in Fig. 6(a)): each hole fixes the position of
the object thanks to an object-stand equipped with a dowel
pin (Fig. 6(b)). The pin fixes the stand to the plate, ensuring
a precise positioning of the object, but it does not constrain
the object, leaving it free to be moved by the robot during
the interaction. The holes on the plate are organized as a
9×9 mesh grid with nodal distance 10mm (Fig. 6(a)). This
translates into 81 possible different positions in the XY plane
for the object and a maximum displacement of ∼57mm.

The plate is placed on the frame under the device in a
way that the center of the grid is aligned with the Delta
Robot base center, i.e. the intersection of the normals to the
rotational axis of the three joints. In Fig. 6(a) is depicted a



Fig. 6. Sketch and sizes of the experimental setup. (a) Sketch of
the mesh grid employed as reference position for the objects. In
the sketch is depicted also the SoftGripper in order to show the
relative position between the grid and the end-effector. (b) Sketch
of the object-stand used to ensure that the object position is accurate
at the beginning of the grasping task. Note that the stand leaves the
object free to be moved due the interactions with the robot end-
effector. (c) List of the objects to be grasped: six spheres spanning
from 40mm diameter and 20g weight to 80mm diameter and 1200g
weight.

sketch of the grid-gripper relative position. It is worth noting
that the SoftGripper fingers are aligned with the grid lines.

We performed this experiment with both the SoftDelta and
the rigid delta manipulator (Fig. 5(b)), using six different
spherical objects with different sizes and weights. In Fig.
6(b,c) are reported the dimensions of the pinned object stand
and of the objects.

2) Experimental Setup: We built the parallel Rigid Delta
manipulator (Fig. 5(b)) sharing equal size and workspace
with the proposed compliant device and differing only in
the actuators. The SoftDelta is actuated by three qbmoves
Advanced (Fig. 4(c)), while the Rigid Delta is actuated by
three Maxon motor DCX22S with a GPX22HP gearhead
(reduction ratio 231 : 1), equipped with the AS5045 magnetic
encoder and the electronic board described in [2] (detail in
Fig. 5(b)). As for the qbmoves, the electronic board manages
sensing, communication and low-level control (PID). Fig. 5
compares the two devices, showing their main components.
It is worth noting that both devices are equipped with the
Pisa/IIT SoftGripper.

A force sensor (6−axis force/torque ATI mini 45) is placed
between the gripper and the delta mobile platform (Fig. 5)
to measure the interaction forces applied during the contact.
The wight of the sensor is 91.7g.

3) Experimental Procedure: In each trial the parallel
manipulator starts with the end-effector lifted over the plate,
and the gripper is set to a pre-closure configuration to avoid
singularities of the fingers. Then, the end-effector moves
vertically until the fingertips are nearly touching the plate.
At this point, the gripper closes and tries to grasp the object.

Independently from the object weight, size and position the
grasping approach is the same and is pre-tuned on the big
sphere size. After the grasping phase, the robot lifts the end-
effector. To summarize, the joint reference is a minimum
jerk trajectory from 0.7854rad to −0.2443rad in 1.5s and an
opposite trajectory to return to the starting position.

As one of the performance indexes, we chose to use the
norm of the force measured by the sensor. The mesh grid on
the plate is spanned with all spheres and both devices. The
goal is to analyze the performance of the robots in presence
of a variation in the object size and weight and an error in
the relative position between the object and the end-effector.

In this experiment the mechanical behavior of the Soft-
Delta is set to soft (i.e θ1,i−θ2,i = 0rad, i = 1, . . .3) to en-
hance adaptability. In order to preserve the robot compliance,
the adopted control strategy is the one proposed in [10] and
briefly presented in section III-C, i.e. a feedforward control
method based on an ILC approach.

4) Results: The experimental results are reported in Fig.
7. Each map represents the grasping results for a given robot
and a given sphere: a cross marker means that the robot failed
to grasp the object given that displacement, while a circle
represents a success. The color-map of the circles represents
the maximum norm of the forces applied by the robot during
the contact and grasping phase: darker colors translates into
larger forces. For each case the table reports: the success
percentage, the mean value and the standard deviation of the
maximum norm of the applied forces and the value of the
maximum norm.

Fig. 8 summarizes the successful grasp percentage in
function of the maximum displacement for each robot and
each sphere. Each value on the x-axis represents the radius of
a circle centered in the center of the grid. The corresponding
values on the y-axis represent the successful grasp percentage
for each sphere when the object to-be-grasped is placed
within that circle. In order to better analyze the results, in
Fig. 8 are reported also the results averaged over the size
and weight of the spheres.

Finally, Fig. 9 compares the grasping sequence of the big
heavy sphere placed in the grid position [30 ,−30]mm for
the Rigid Delta and the SoftDelta respectively.

5) Discussion: Independently from the size and the
weight of the considered object, the SoftHandler presents a
higher grasping success rate than the Rigid Delta robot (Fig.
7). Indeed, the average of the success rate between all spheres
and all displacements (Fig. 8(l)) is 68% for the SoftHandler,
while it is 41.8% for the Rigid Delta. Furthermore, it is worth
noting that, in the soft robot case, the success area does
not present any hole relatively to the center of the grid, on
the contrary of the rigid robot case. The better performance
of the SoftHandler can be attributed to one of the main
features of soft robotic technologies, i.e. the adaptivity to
the environment.

Fig. 8 shows that the proposed device presents a higher
grasping success rate for each sphere and each maximum
displacement. Fig. 8 shows also that, for both manipulators,
the grasping performance worsen when the maximum dis-



Fig. 7. Comparison between the SoftHandler and the Rigid Delta Robot in terms of grasping capability and applied contact forces when
there is a displacement between the end-effector and the object. In the figure each map represents the grasping results for a given robot
and a given object: a cross marker means that the robot failed to grasp the object in that position, while a circle represents a success.
The colormap of the circles represents the maximum norm of the applied forces during the contact and grasping phase: darker colors
represents larger forces. In the table are reported for each case: the success percentage, the mean value and the standard deviation of the
maximum norm of the applied forces and the value of the maximum norm.
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(a) Small light sphere.
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(b) Medium light sphere.
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(c) Big light sphere.
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(d) Avg. of the light spheres.
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(e) Small heavy sphere.

0 20 40 60
Maximum Displacement [mm]

0

20

40

60

80

100

S
uc

ce
ss

fu
l G

ra
sp

s 
[%

]

Rigid Delta
SoftHandler

(f) Medium heavy sphere.
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(g) Big heavy sphere.
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(h) Avg. of the heavy spheres.
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(i) Avg. of the small spheres.
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(j) Avg. of the medium spheres.
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(k) Avg. of the big spheres.
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(l) Avg. of all the spheres.

Fig. 8. Successful grasp percentage based on the maximum displacement between the end-effector and the object. Each value on the
x-axis represents the radius of a circle centered in the center of the grid. The corresponding values on the y-axis represent the successful
grasp percentage for each sphere when the object to-be-grasped is placed within that circle. Each plot compares the performance obtained
with the rigid Delta and the SoftHandler. (a) Results of the small light sphere. (b) Results of the medium light sphere. (c) Results of
the big light sphere. (d) Average of the results obtained with the light spheres. (e) Results of the small heavy sphere. (f) Results of the
medium heavy sphere. (g) Results of the big heavy sphere. (h) Average of the results obtained with the heavy spheres. (i) Average of the
results obtained for the small spheres. (j) Average of the results obtained with the medium spheres. (k) Average of the results obtained
with the big spheres. (l) Average of the results obtained with all the spheres.

placement increases. This obvious result is due to the fact
that larger displacements lead to grasps that do not follow
the caging primitive, i.e. weaker grasps. An example is an
object grasped with only two fingers. In this case, heavier
objects lead to easier slippage out of the end-effector. Given
this observation, an actuation mechanism that leads to an
adaptive end-effector position is momentous for grasping
performance of the whole system. This result is shown in
Fig. 9. This photo-sequence compares the performance of
the SoftHandler with the one of the Rigid Delta. While
approaching the big heavy sphere placed ∼43mm afar from
the platform center, the Rigid Delta is not able to adapt
the position of its end-effector due to the stiffness of its
motion. On the other hand, the proposed device is able to
passively adapt the position of its end-effector, moving it in
the direction of the sphere, and it is able to grasp it. The
vertical orange line highlights how much the gripper moved
from the vertical blue line, i.e. the reference position (please
refer to the video footage for more details).

This result is intuitive for big heavy objects, nevertheless
it is also present for lighter objects, although attenuated.
Indeed, two effects arise. First, if the object is particularly
lightweight, also a minor force due to the interaction with a
stiff system could be sufficient to move it from the grasping
volume of the gripper. On the other hand, if the device has
a compliant behavior, the force peak can be filtered. The
second reason is due to the small size of the object. Fig.
8(i) shows that the worsening effect due to the displacement
increases in the case of smaller objects. This is caused
by the fact that, given a large displacement, there is no
contact between the gripper fingers and the small sphere. In
particular, in this experiment the small sphere is completely
out of the grasping volume of the gripper in the case of the
largest displacement.

The grasping success rate is a parameter of paramount
importance because it affects the speed performance of the
manipulator. Indeed, if the time required to complete one
grasping cycle is T , the total task time to execute a series of



(a) Rigid Delta.

(b) SoftHandler.

Fig. 9. Photo-sequence of the Delta grasping the big heavy sphere in presence of a displacement of ∼ 43mm. (a) the Rigid Delta fails
to grasp the object, notwithstanding it is equipped with the SoftGripper. (b) The intrinsic adaptivity of the SoftDelta permits to readjust
the end-effector position, moving it from the vertical blue line to the vertical orange line.

n cycles (e.g. to empty a basket of n oranges) has an expected
value of Ttot =

n
γ

T , where γ is the grasping success rate. A

direct consequence of this is that, for a rigid manipulator, to
be as fast as the SoftHandler, should feature a faster cycling
time

TR <
γR

γS
TS , (6)

where γS and γR are the probability of obtaining a successful
grasp with the SoftHandler and the rigid Delta, respectively,
while TS and TR are the cycling time of the SoftHandler and
the rigid Delta, respectively. This means that, assuming e.g.
a maximum displacement error of 30mm we get (from Fig.
8(l)) γS = 0.983 and γR = 0.713, thus the rigid robot should
be 38% faster to recover the loss of performance due to the
larger failure rate.

Finally, Fig. 7 compares the forces applied by the rigid
robot with the forces applied by the SoftHandler. In the
case of the small spheres, the forces are comparable for both
devices. This is due to the scarcity of interactions since the

objects are small and the grasping approach is tuned on the
biggest object. Notwithstanding the comparable forces, the
SoftHandler performance remains better in terms of grasping
success rate. Instead, in the cases of medium and big spheres
the forces applied by the rigid robot during the grasping
phase are larger since interactions between the object and
the SoftGripper are major.

B. Force at the End-Effector

In this section we analyze the results obtained with the
SoftDelta, comparing the experimental force measurements
with the force estimated with the Cartesian stiffness model.
Given (1), (2), a configuration of the SoftDelta q and the
wrench due to the end-effector weight, it is possible to
compute the Cartesian stiffness through (4). We choose qi =
−0.2443rad, i = 1, . . .3, i.e. the configuration corresponding
to the grasping phase. Given KC, we can estimate the applied
force f̃ as

f̃ = KC ·∆x , (7)
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Fig. 10. Comparison between the experimental and the estimated
force. A cross marker means that the SoftHandler failed to grasp
all the spheres given that displacement, while a circle represents a
success. The color-map of the circles represents the metric (10).

where ∆x is the Cartesian displacement from the reference
position. Considering the grasping phase as reference, the
vector of the Cartesian displacement ∆xn for each node n
(n= 1 . . .81) of the grid is equal, in the XY plane, to the grid
displacement itself (Fig. 6(a)). Given this observation, we
obtain the estimate of the applied force f̃n = [ f̃x,n , f̃y,n , f̃z,n]

T

for each nodal displacement n (n = 1 . . .81). Note that, since
there is no a-priori information about the displacement along
the z-axis, we will assume it equal to zero, and we will omit
the force measurement f̃z,n in the next analysis.

Given the experimental force measurements fs,n(t) =
[ fx,s,n(t), fy,s,n(t), fz,s,n(t)]T , where t is the time variable,
s is the sphere index (s = 1 . . .6), and n (n = 1 . . .81) is
the nodal position on the grid, we define the force vector
f∗s,n = [ f ∗x,s,n, f ∗y,s,n, f ∗z,s,n]

T corresponding to the peak value
of force norm during the grasping approach as

f∗s,n , fs,n(t∗s,n)=

 fx,s,n(t∗s,n)
fy,s,n(t∗s,n)
fz,s,n(t∗s,n)

 ,∀s= 1 . . .6 ,n= 1 . . .81 , (8)

where t∗s,n = argmaxt(||fs,n(t)||). Given (8), we then average
the results of the successful grasps among the six spheres.
Thus, we define the vector of the average measured force as

f̄n ,
1

Nn

Nn

∑
s∈Sn

f∗s,n ,∀n = 1 . . .81 , (9)

where Sn is the set containing the indexes of the spheres
successfully grasped at the n-th displacement, and Nn is the
cardinality of Sn. Given (9) we introduce the performance
metric related to the n-th grid displacement. We define it as
the norm of the error between the force vector estimated from
the Cartesian stiffness model and the force measurements

Pn ,

∥∥∥∥[ f̃x,n− f̄x,n
f̃y,n− f̄y,n

]∥∥∥∥ ,∀n = 1 . . .81 . (10)

Fig. 10 reports the comparison between the experimental
force measurements and the estimated force measurements.
A cross marker means that the SoftHandler failed to grasp all
the spheres given that displacement , while a circle represents
a success. The color-map of the circles represents the value of
the metric (10). The error between the two values has a mean
value of 1.24N and a peak value of 3.74N corresponding to
a displacement of 57mm. The difference between the model
and the experimental results increases with the displacement.

V. SYSTEM VALIDATION

In this section we show the robot effectiveness in vari-
ous grasping tasks where several heterogeneous objects are
involved. Several experimental results on the applications
discussed in Sec. II are presented, with the final goal of
testing the SoftHandler in realistic scenarios. The selected
tasks consist in the picking and placing objects from a
crate to another one. The objective is to empty the picking
crate. As a preliminary validation, we show the SoftHandler
grasping a series of objects with a wide variety of physical
and geometrical properties. Then, we test the behavior of
the robot when the picking crate contains several objects,
simulating two different scenarios (raw food handling and bin
picking) with two different object configurations. Thus, we
show first how the SoftHandler compliance allows to grasp
objects that present a broad variety of physical properties.
Then, we test the ability of the robot in picking items from
a cluttered crate.

1) Experimental Setup: Two 600× 400× 100mm crates
are placed under the SoftHandler, one with the objects to-be-
picked and one empty where the objects have to be placed.
An Asus Xtion-Pro camera is mounted on the robot frame.
This RGB-D camera is used to sense the XYZ position of
the objects to be picked. The vision system implements the
Euclidean Cluster Extraction (ECE) algorithm. This segmen-
tation method is used to sense XYZ position of the cluster
(the Z element is chosen as the highest one for each cluster).
Fig. 11 illustrates the vision system operating principle. The
real scene (11(a)) is perceived by the camera that senses the
point cloud (11(b)). The point cloud is divided into clusters
and a frame is assigned to each cluster (11(c)). Note that
some clusters may include more than one object. Finally, the
vision system chooses which object is the next to be picked
and sends the position to the control system. Note that only
the position of the respective frame is passed to the control
system, with no information about the cluster.

Given the randomness of the object locations, the ILC
control architecture described in Sec. III-C can not be
applied, unless limiting the object positions to a few know
fixed points. Since our goal is to test the proposed system in
a realistic scenario, we prefer to adopt the PID approach
instead. The stiffness configuration of the SoftHandler is
set to the minimum in order to preserve the integrity of
these fragile objects. As described in Sec. III-C, the effects
of employing an inverse kinematics with a low-tuned PID
control instead of the ILC approach are twofold. First, there
is a stiffening of the robot joint caused by the feedback term



(a) Real scene. (b) Perceived scene. (c) Objects recognition. (d) Passed information.

Fig. 11. Pipeline of the vision system. The real scene (a) is perceived by an RGB-D camera that senses the point cloud (b). The point
cloud is divided into clusters and a frame is assigned to each cluster (c). The vision system sends to the control system only the frame
linked to one cluster (d).

(a) Courgette (∅30-45×160-200mm, 90-130g). (b) Pepper (∅70-90×150-170mm, 280-370g).

(c) Onion bundle (∅60-80×370-390mm, 250-280g). (d) Cabbagge (∅170mm, 1170g).

(e) Lemon net bag (∅220×60mm, 1000g). (f) Salad bag (245×260×60mm, 200g).

(g) Cherry tomato (∅20-30mm, 10-15g). (h) Egg (∅40-45×55-65mm, 60-65g).

Fig. 12. Raw vegetables and fruits handling photo-sequences. The SoftHandler is able to grasp objects with several different size, shape,
weight, texture and stiffness. Note that, given the irregularity of the shape of involved objects, the reported dimensions are an approximation
of the real ones.



Fig. 13. Grocery handling scenario: tomato package (185×120×
110mm, 500g), strawberry package (185×115×90mm, 500g), and
egg package (155×110×80mm, 420g).

in the control law. Since the chosen gains of the PID are
low, the theoretical maximum stiffness variation is equal
to 0.0166 Nm

rad . The second effect is the worsening of the
tracking performance. Indeed, the root mean square of the
tracking error (averaged between the trials presented in the
following) is more than doubled than the one obtained in
the experiment in Sec. IV-A, resulting in a mean positioning
error of the end-effector equal to 23.58mm. While the first
issue can not be solved unless adopting a different control
law, the second issue appears to be less crucial given the
system characterization in Sec. IV-A. Indeed, from Fig. 8(l)
we expect a success rate of about 99% for a displacement
equal to 23.58mm.

2) Experiments: Three sets of experiments are presented.
Preliminary Validation: As described in Sec. II, handling

of raw food and groceries involve unorganized objects with
a wide variety of sizes, shapes, weights, stiffnesses, textures
and orientations. In Fig. 12 are depicted objects linked to
a food handling task, while in Fig. 13 are depicted objects
linked to a grocery handling task. Size and weight of each
object are reported in the caption of the figures.

Validation in Raw Food Handling Scenario: In the first
two experiments, the objects involved in the task are apples,
thus they present homogeneous geometrical characteristics
(∅80-95mm, 200-280g). Fig. 14(a) shows the setup of
Experiment 1. Here the 10 objects are disorganized and
can move freely in the crate. On the other hand, in Fig.
14(b) is depicted the second setup of the raw food handling
scenario (Experiment 2). In this case, the 7 items are ordered
and partially constrained. Indeed, the plastic fruit support

prevents any movement of the apples in the XY plane. In
Experiment 3, the SoftHandler is tested in an challenging
condition: grasping disorganized and heterogeneous objects.
In this task the 30 employed objects are toy fruits with
different shapes and sizes (∅25-80×50-170mm, 8-20g). Fig.
15 shows the setup.

Validation in Bin Picking Scenario: Experiment 4 and 5
are related to the bin picking scenario. The objects to-be-
picked are rubber gear covers. All the items present the same
complex geometry and weight (∅90×130mm, 180g). In the
first scenario (Experiment 4, Fig. 16(a)), 7 gear covers are
randomly placed in the crate and are free to move. In the
second setup (Experiment 5, Fig. 16(b)), 6 gear covers are
stacked into 3 columns of 2 elements each.

3) Results: In Experiment 1 all the apples are moved in
approximately 120s. The grasping success rate is 83%, this
means that each apple needs 1.2 cycles to be moved. In Ex-
periment 2 all the apples are moved in ∼150s. The grasping
success rate is 78%, this means that each apple needs 1.3
cycles to be moved. In Experiment 3 the task is completed
in ∼150s. The grasping success rate is approximately 69%,
that translates into 1.4 cycles for each item. In Experiment 4
all the objects are moved in ∼80s. The grasping success rate
is 87%, this means that each gear cover needs 1.1 cycles
to be moved. In Experiment 5 all the items are moved in
∼110s. The grasping success rate is 100%, this means that
each gear cover needs 1 cycle to be moved.

4) Discussion: Several graspable objects are reported in
Fig. 12 and in Fig. 13. Fig. 12(a) shows the SoftHandler
grasping a courgette, while Fig. 12(b) shows how the pro-
posed device adapts to the pepper shape. Fig. 12(c) shows
the robot ability to grasp large objects like an onion bundle,
while Fig. 12(d) shows how the SoftGripper fingers adapt
to a large cabbage too. The robot is also able to grasp
an heavy object (Fig. 12(d) and Fig. 12(e)). Note that the
weight perceived by the manipulator and the shape of the
object change during the grasp of the net bag full of lemons.
Notwithstanding the ability of the SoftHandler to handle
heavy payloads, Fig. 12(f-h) display how the compliance
elements of the SoftHandler allows also to handle fragile
objects. In Fig. 12(f) the robot grasps a delicate salad bag.
In Fig. 12(g) it is shown how cherry tomatoes can be picked
despite of their tiny size. Fig. 12(h) shows that the proposed
device can handle also eggs. Finally, in Fig. 13 is depicted a
grocery handling task. The proposed system grasps a cherry
tomato, a strawberry and an egg package in sequence. It is
worth noting that none of the objects presented any kind of
damage at the end of the experiment.

In Experiment 1 (Fig. 14(a)) the apples are unorganized
and can move freely in the XY plane. This allows an easier
positioning of the gripper fingers in-between the objects,
that leads to a full envelope of the object, hence to more
stable grasps. At the same time, a moving object may cause
measurement errors in the vision system. In Experiment
2 (Fig. 14(b)) the fruit support hinders the positioning
of the fingers in-between the objects, but it enhances the
adaptation of the end-effector. In Experiment 3 (Fig. 15) the



(a) Photo-sequence of Experiment 1: unordered apples task.

(b) Photo-sequence of Experiment 2: ordered apples task.

Fig. 14. Raw food handling scenario: emptying a crate of apples. The objects share homogeneous physical and geometrical characteristics,
i.e. ∅80-95mm, 200-280g. Two scenarios are presented: (a) 10 apples are randomly place and are free to move within the crate. (b) 7
apples are ordered and partially constraint by the plastic fruit support.

Fig. 15. Raw food handling scenario. Photo-sequence of Experiment 3. The SoftHandler empties a crate full of toy fruits. The objects
differ in shape and size, and they are randomly placed within the crate. The size range of the objects is ∅25-80×50-170mm, while the
weight range is 8-20g

objects are disorganized, heterogeneous and cluttered. It is
worth mentioning that the employed grasping approach is
equal independently from the object geometrical properties.
Finally, in Experiment 4 (Fig. 16(a)) the rubber gear covers
are placed randomly in position and orientation, while in
Experiment 5 (Fig. 16(b)) the objects are orderly stacked.

In all the experiments the proposed system is able to
move the 100% of the objects, successfully completing the
task. It is worth noting how the SoftGripper fingers behave
differently also when grasping similar objects. This is linked
to the position and orientation of the object as to potential
constraints. Fig. 14 highlights this point. The apples are
grasped with different finger configurations depending on
how much the scene is cluttered. In Fig. 16(a), different
orientations of the object lead to different gripper grasps. In

some cases, the object can be grasped also with a reduced
number of fingers. This is the case of the carrot in Fig.
15 that is grasped with only two fingers instead of four.
Finally, in the video attachment it is possible to notice that
the SoftHandler end-effector adapts to the apple position.

VI. GENERAL DISCUSSION

Sec. IV showed a comparison between the SoftHandler
and a comparable rigid manipulator, while Sec. V presented
a validation of the system in grasping objects presenting
a broad variety of physical and geometrical characteristics.
During the experiments we observed that some of the grasp
may fail during the execution of the task. Mostly observed
unsuccessful grasps were due to two different types of
failure: slipping and missing.



(a) Photo-sequence of Experiment 4: unordered rubber gear covers task.

(b) Photo-sequence of Experiment 5: ordered rubber gear covers task.

Fig. 16. Bin picking scenario: emptying a crate of rubber gear covers. The objects share homogeneous complex physical and geometrical
characteristics, i.e. ∅90×130mm, 180g. Two scenarios are presented: (a) 7 gear covers are randomly placed and are free to move within
the crate. (b) 6 objects are stacked into 3 columns of 2 elements each.

We refer to slipping when the grasped item slips out of the
gripper fingers. This issue occurs, for example, in Experiment
3 (Fig. 15). The failure is linked to grasps where the fingers
do not completely cage the object. This may happen when
the displacement between the end-effector and the object is
large. As suggested by Fig. 8(i) and 8(h), tiny objects and
heavy objects are the most challenging ones, especially when
the displacement is large. Another reason for slipping can be
a wrong grasping approach. Indeed, in all the experiments we
employed the same grasping approach without any specific
tuning on the item to-be-picked. Future works will analyze
different grasping approaches for different object geometries.

On the other hand, we refer to missing when the end-
effector is placed where there are no objects. This issue is
related to the vision system that passes a wrong position of
the fruit to-be-picked to the control system. If we ignore this
type of fault, the success rate increases from 83% to 100%
(Experiment 1 - Fig. 14(a)), from 78% to 100% (Experiment
2 - Fig. 14(b)), from 69% to 81% (Experiment 3 - Fig.
15) and from 87% to 100% (Experiment 4 - Fig. 16(a)),
respectively. During Experiment 5 (Fig. 16(b)) no vision
errors occurred. Thus, the average grasping success rate
neglecting the vision errors is 96%. Interestingly, this result
is close to the success rate obtained in Sec. IV-A. Indeed,
the average positioning error of the end-effector during
Experiments 1-5 is 23.58mm, which corresponds to a success
rate of 99%, according to Fig. 8(l). The difference between
the two values can be ascribed to experimental variability and
differences in the setup, which include different controllers
and different manipulated objects.

Another issue to consider is the double-grasp, i.e. when
the gripper closes around more than one object. This tends
to occur when the objects are cluttered (e.g. Fig. 15), and the
adopted vision system merges close items into one cluster.
A double-grasp may resolve in either no picking, picking a

single item or picking more than one. Each of these result
could be considered a failure or not depending on the task.
Employing a different grasping approach or a different vision
system may solve this behavior.

The quantitative experiments in Sec. V let us appraise
the average picking time of the SoftHandler, which amounts
to ∼ 10s. The most important factor limiting the speed of
the system is the power of the adopted actuators, which
are mainly intended for research purposes. Indeed, Fig. 4(d)
shows that their maximum velocity is lower than the one of
most industrial manipulators. On the other hand, our goal
was not to develop a system highly optimized in terms of
speed performance, rather to explore the development of a
device for handling of heterogeneous and fragile objects, that
is robust to accidental impacts. Future works will aim to
improve the actuation performance and, more in general, the
system performance.

A second factor limiting the speed of the system is linked
to the vision system. Each failure in the vision system leads
to an additional cycle to empty the crate, resulting in longer
task completion time. Experiments in Sec. V showed that
the employed vision system presents an average failing rate
equal to 15%.

Nevertheless, the type of task plays an important role in
evaluating the speed of the system. Usually, the tasks where
the robot achieves the fastest performance are those where
the objects are small, ordered and perfectly known. Here,
we are tackling a completely different task, i.e. picking and
placing of heterogeneous unknown objects. As suggested
by the results in Sec. IV, in the case under analysis, rigid
manipulators exhibit lower grasping performance (i.e. more
failures), influencing the total task completion time.

However, in presence of a displacement error, the Soft-
Handler can grasp a wide variety of objects with a perfor-
mance superior to a comparable rigid robot, both in terms



of grasping success rate and applied contact forces. The
former metric leads to a better efficiency in terms of total
task completion time. Instead, lower applied contact forces
increase the object integrity preservation and also the device
robustness.

VII. CONCLUSIONS

In this work, we tackled the challenge of industrial pick-
and-place tasks, presenting a novel robotic system based
on soft robotic technologies. The developed system, namely
SoftHandler, integrates a variable stiffness delta manipulator
(SoftDelta) and a soft articulated gripper (Pisa/IIT SoftGrip-
per) in order to overcome limitations of traditional rigid
robots. We presented the system mechanical design and
control architecture, and we analyzed its Cartesian stiffness.

We designed a benchmarking method to compare the
proposed device with a rigid manipulator with an equal
kinematic structure, same soft end-effector and analogous
actuation performance. This paper is one of the few that
presents a direct juxtaposition of a multi-joint compliant
robot and its conventional and rigid counterpart. Results
show that the SoftHandler achieves a higher grasping success
rate in presence of positioning or measurement errors, re-
sulting in a more robust behavior. Furthermore, results show
also that the rigid robot presents larger applied forces in the
grasping phase, resulting in a potentially harmful behavior
both for human beings, grasped objects and the robot itself.

Finally, the effectiveness of the SoftHandler was tested
in realistic scenarios. First, we performed various grasping
tests on a set of real objects presenting different geometries
and organizations. Then, we tested the performance of the
systems in a handling task of raw food and industrial parts.
Results show that the compliant elements of the proposed
device allow to grasp a wide variety of real objects in
different scenario while preserving their integrity.
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