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Abstract

In this paper we consider a complete dynamic model
for the “Sphericle”. a spherical vehicle that has been
designed and realized in our laboratory. The sphericle
is able to roll on the floor of the laboratory and reach
arhitrary positions and orientations, through the use of
only. two motors placed within the rolling sphere. In
this paper. we report on the derivation of the kinematic
model of the Sphericle. which incorporates two types of
nonholonomic constraints, and its dynamic model.

1 Introduc_tion

In recent years, the study of systems with nonholo-
nomic constraints has attracted a lot of attention for
several reasons (see e.g. [1]). Such constraints arise
naturally in many mechanical devices: typical cases
are car-like vehicles [2, 3], underwater vehicles, un-
deractuated satellites, or dexterous robotic hands [4,
5,6.7.8.9,10. 11, 12]. Sometimes nonholonomic con-
straints are introdnced on purpose to obtain a better
behaviour of the svstem. An interesting aspect of such
syvstems is due to the fact that they need a smaller
number of actuators than the number of independent
configurations at equilibrium; this imply a lower com-
plexity (and cost) of the mechanical system. On the
other hand. nonholonomic systems, introduce many
difticulties in the analysis and control of the system.
The dvnamic modeling is more complicated than for
unconstrained or holonomically constrained systems.
Control design. on the other hand, cannot afford the
powerful results of linear systems theory (the linear
approximation of nonholonomic system causes the loss
of controllability). and it is well known by now that
nonholonomic systems can not be stabilized via con-
tinuous feedback control laws.

In this paper we describe an experimental appa-
ratus developed in our laboratory for research and
advanced teaching purposes, previously introduced in
[13]. The kinematics of the vehicle are nonholonomic,
and resnlt from the combination of the kinematics of
two classical nonholonomic systems, namely, a unicy-
cle and a plate-hall system. The “sphericle” is a ball
that volls freely on the floor, and can reach any ar-
bitrary position therein and orientation (as shown in
{13]). To-make the ball move, a mobile mass is placed
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Figure 1: A transparent version of the Sphericle shows
the inner moving mass with wheels and suspensions.

within the cavity of the ball. To implement motion.
we built a mechanism with an inner mass moving by
means of two weels (differential drive), which roll on
the internal surface of the sphere. The inner vehicle
is inserted through an opening in the ball, which is
sealed afterwards.

In section 2, the kinematics of the Sphericle are
derived using a different approach than was used in
[13}. A dynamic model of the vehicle is then consid-
ered, which uses Euler-Lagrange equations in quasi—
coordinates (section 3).

2 Kinematic Modeling"

The kinematic model of the Sphericle (see fig.1)
will be derived in the assumption that the sphere rolls
without slipping on the floor. Moreover, rotations of
the sphere around the vertical axis are not allowed.
The ball thickness is neglected, and the projection of
the center of the inner vehicle is always considered to
coincide with the contact point between the sphere
and the floor.

To describe the sphere and inner mass position.
choose the coordinates = and y of the contact point
between the sphere and the floor, in an orthogonal
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Figure 2: Lagrangian coordinates for the sphere: r, y,
w.orv. U

reference frame fixed to the floor; if # denotes the in-
ner mass orientation, we get * = cosfu,, ¥ = sinfu,,
f# = u,. i.e., the classical unicycle kinematics equa-
tions. where u, is the forward velocity of the inner

mass. i.e. the average of the linear velocity of the .

wheels. and u, is the angular velocity of the inner
mass. i.e. the difference of the linear velocity of the
wheels.

Three variables describing the sphere orientation
are the azimuth u and elevation v of the contact point.
hetween the sphere and the floor in a spherical coordi-
nate reference frame fixed to the ball, and the holon-
omy angle ¥ hetween the x—axes of the floor and ball
Gauss frames at the contact point (see fig.2). so that
the rotation matrix R, between the sphere frame and
the inertial frame (whose columns are the sphere frame
axes projected on the inertial frame) is

Ry, v.¢) = Ry (m) Ro (1) Re(v) Ry(—u) (1)

where R,. R, and R. are the elementary rotations
(the constant matrix R, () is due to the fact that the
Gauss frames have opposite z—axes).

The Jacobian matrix that relates the Lagrangian
velocities @, ¢ and v* with the sphere angular velocity

ws. 1.0,
Wy = Js%[u,v,z/v]T (2)

is

where i = [1,0,0)7, j = [0,1,0]” and k = [0,0,1]T.
The description 1 is not globally valid, as v = £m/2
is singularity point for the chosen coordinates (in fact
det(J;) = cosv). A suitable change of coordinates
should be applied when in a neighborhood of singu-
larities.

The system variables are

g=lz, ¥, u, v, ¥, 6.

We define vp; := & — pwyy and vpy := g + pws, the
velocities of the point of the sphere in contact with

" the plane. Since the nonholonomic constraints for the

system are

(respectively the sphere rolls without slip, the sphere
don’t spin and the direction is constrained by the in-
ner mass wheels), the following equation describes the -
sphericle kinematics

q = g1(q)u1 + g2(q)ua, (3)
where

cos@

sin @
cos(6+y)

pcosv

_sin!0+1ll! y

p
tan v cos(6+1v)
P
0

anlq) = g2(q) =

_—-OoO0oO0OOoOO

The system has two inputs (u; and us, as already
defined) and six states.

3 Dynamic Modeling

In this section the dynamic equations for the Spher-
icle are derived applying the Lagrangian approach in
quasi coordinates. Recall that the Lagrange equation
in nonholonomically constrained, generalized coordi-
nates is written as

+ATA = Fu (4)

where q is a set of independent variable that describes
the system configuration, the Lagrangian L(q, ¢) is the
difference of the kinetic energy and potential energy
i.e. L{q,q) =T{(q,9) — V(q), F(q) is a n x m full rank
matrix, the vector of the generalized external forces u
is the control, and A4 is an k x m matrix that repre-

Jo(Quov.oi) =[=Rsj| Re(m)R. ()R, (v)i | Ry(7)R.(y*)k] = sents the k nonholonomic constraints in the so called

cosvsiny:  cosy 0
cosrcosy —siny 0
sin v 0 -1

Pfaffian form (i.e. the velocities appear linearly in the
matrix equations):

A(g)g =0. (5)
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The resulting equations can be written in matrix form

M(q)§ + N(g,4) + AT(q)A = F(q)u (6)
Ag=0 (7)

where AL{q) is the n x n symmetric inertia matrix, and
the term A7 (q)\ represents the generalized constraint
forces. If we consider the n x (n — k) full rank matrix
S(q) such'that 4(¢)S(q) = 0, we can eliminate the un-
known Lagrange multipliers A pre-multiplying the eq.
(6) by ST(g). and then we can eliminate the equation
(7) usiug a set of n — k independent velocities v, such

that.
q=S(q)v. (8)
Finallv we obtain a system in the form
A(q)7 + N(q,v) = F(q)u (9)

where M{q) is a (n — k) x (n — k) symmetric matrix,.
N(g.v) and F(q) are respectively a (n — k) vector and
a (n — k) x m matrix.

The problem with applying such classical deriva-
tion to the sphericle dynamics is that the expression
of kinetic and potential energy in terms of general-
ized coordinates for the system is quite cumbersome.
In systems with nonholonomic constraints, in order
to simplify the energetic description and to obtain di-
rectly the equation in the form (9), it is expedient to
define the kinetic energy by means of a set of non-
integrable velocities instead of the time derivatives of
the Lagrangian variables g. We can thus include the
constraints in the Lagrange equation (4) before the
caleulus of derivatives. In fact, if we choose the set
{v. 7}, with v defined in (8) and 7 such that the non-
holonomic constraints become simply 7 = 0, using (5),

we obtain
7 A | T

The Lagrange equation in quasi—coordinates evaluates

d OL 79L T o
5'07—5 a—q-{-S FSV’;=O~F1L (10)
where [(g. . 7) is the skew symmetric matrix defined
by
[ = 0__T 85:;/ i aS;Lalj
T ov \ gy dqi |
oT af‘lcol i 8A-col Fi
7 (- ()

Notice that, wherever the derivatives with respect
to the constrained velocities, namely %;T/—, need not be
computed, we can use a simplified form for the kinetic
energy T(q.v) := T(¢q,v,0) (i.e. we include the non-
holonomic constraints).

Figure 3: Lagrangian coordinates for the inner mass:
a, 3, and 7.

In order to compute equation (10), first define the
configuration variables q to include angles «, 3, and
v describing respectively the roll, pitch and yaw an-
gles of the inner mass with respect to a frame fixed to
the floor (see fig.3), so that the rotation matrix R,, be-
tween the inner mass frame and the inertial frame (the
R, columns are the inner mass frame axes projected
on the inertial frame) is given by

Ru(a,8,7) := Ra(a) Ry(B) R:(7) =

C3Cy —C3Sy 33
= 8483Cy + Ca8y  —8a838y +CaCy —8aCh
~Ca83Cy + 8a8y  CaS38+ + 84Cy CaCg

where s, = sin(a), co = cos(e) and so on. The Jaco-
bian matrix that relates the Lagrangian variables with
the inner mass angular velocities w,, i.e.

_; 4 T
wy = JII dt[a’ﬁ7] (12)
is
1 0 sinf3
Ju(a,8,7)=| 0 cosa —sinacosf
0 sina cosacosf

The other Lagrangian variables remains the same of
the quasi-static model, so the configuration variables
are described by the 8-dimensional vector

g=z yuv v apAl.

The singularity points for the chosen coordinates are
v = +m/2 and 8 = *n/2. The system has 4 degrees
of freedom: the angular velocity of the sphere with
respect to the inertial frame wy, and w,y (the rotation
around the vertical axis w,. is not allowed), and the
angular velocity of the inner mass with respect to the
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sphere. projected on the frame fixed to the inner mass:
wyy and w,= (wy» = 0 because of the nonholonomic
constraint dne to the wheels). So the 4-dimensional
independent. velocity vector is

vi= [\'-‘f’s:r Wy Way Wu:]T (13)

while the constrained velocity could be chosen as
= T=o0 14)

V= [7‘P:I‘ Vpy Ws: Wu:n] = (

where, as already defined, vp, = & — pwgy and vpy =
7 + pwsr are the velocity of the point of the sphere
in contact with the plane. Notice that each item of
77 describes a nonholonomic constraint; therefore, by
definition. # is not integrable. The 4 x 8 constraints
matrix. defined in (5) is

—jT
Iyys p T ]J‘ 02x3

7
Oyxa  —iTRTJ, iTRTJ,

Oy kT J, O1x3

while. using definition 13, we obtain the 8 x 4 matrix
(defined in (8)) that relates the independent veloc-
ity with the (non-independent) Lagrangian variables
derivatives. i.e. ¢ = S(q)v:

: /’[ _01 (1) 022
S(q) := .
‘ ITM g 032
JAE 3] T R, Jj k]

Obviously it holds 4(q)S(g) = 0. The potential en-
ergv of the sphere is clearly constant. so ¥ (q) depends
only on the inner mass position:

\'(q) = —AM,g(k-r,) = —M,gpcosqge cosqr

where r, = r. — pR,k is the inner mass position, ry =
[r.y.p}T is the sphere position, M, is the inner mass
mass. g is the gravitational acceleration. The kinetic
energy is

. M, Jjdr, || 1
T(q.q) = ?R' —(#— 5“’:[8“’5
M, |ldr f? 1
+ T l T{f_ + 5&.‘51,,&)1, (15)

where w, is the sphere angular velocity, and w, can be
written using eq. (12). A, is the sphere mass, I, and
I, are respectively the inertia matrix of the sphere and
the inner mass; with no loss of generality we suppose
1y is a dingonal matrix. i.e. I, = diag(Iys, Ty, 1y-)-
Breeanse of the sphere symmetry, I, is proportional to
the identity matrix. so in the further we refer I, as
a scalar; notice that for a small tickness of the ball
surface it results I, ~ %A[sz.

A simple choice for the pseudo-inverse S*(q), such
that v = S*(q)q is

iT
02><2 [ jT ] Js 0-z><3
S+(q) = T jT
02 —[.’Z‘.T}R:{Js [kT]RIJU

The system input in eq. (10) is represented by Fu;
as only the inner mass is actuated, using definition 13,

we choose
U
wi= f
Us

where u; is the forward force applied by the inner mass
wheels (/i.e. the average of the torque of the wheels
divided by the wheel radius) and u, is the rotational
torque applied by the actuators (proportional to the

difference of the wheels torque).

F:=

O™ OO
—_O0OoOo

3.1 Analytic Results

Summarizing, the dynamics of the sphericle can be
written in the form

M(q)v +7/(q,v) + 7" (q) = Fu

where
%1,1 %1,2 %1.3 {1;:-97
_ 2,1 12,2 12,3 —1Ly:86C7
M@= a, M, Mp 0
Li.s7 ~Iy.86c7 0 Iy

My = Msp® + Lor + My p*(1 ~ 2c6¢7 + ¢2) + 1283
My =Mz = (Myp® - I )s786C7

M; 3 = Ma,y = Myp®(cess — sacy + s7case)

Mya = Msp? + Loz + M, p*(2 — sic? — 2cacr) + Iy :s3c?
A23 = Ma,2 = Myp?(—crcs + ches — sas5657)

The vector #'(q,v) = [}, iy, 7y, 4|7 is defined

by
—1 ey, T
ni(g,v) :=v' Ni(q)v
where

Nigwy =0 for j>=k

N2y = Mup®s7 — (Mup? - I,:)s7¢6c7

Ny(1,3) = 2Myp?(cos708 — 3638) — 2(Mup® ~ Li:)cregsy
Ny(2,3) = 2(Mup® — I,:)s6c2cs + Iu:(sacesr + casg)
Ni2.9 = -N2&1‘4) = lu:cec7
Ny3,4) = Myp®(ceca — s8ses7) — (Myp? — I,:)cres
Ny(1,2) = Mup®secr ~ (Myp? — Iux)secect

Nog1,3y = — My p*(ces7ss + secs)+

+(Myp® — I:)(2s6c2ca — cas788 — 36¢8)
Na2,3) = 2Muy p?(—s658 + ces7eg)+
+2(Myp? — Iu:)(cr58c686 — C3c787C8 + c787¢8)

Np3.4y = Mup?sger — (Myp? — I )cess + s7¢896)

N3(1,9) = (Myp? — Li:)(s6ca + cas7ss — 2s5cscd)
Na(1,4) = =Naq1,3) = —Tuzcacr
N3(2.4) = =Ny(2,3) = —Tuz(s7¢896 + co58)

Ni(1.4) = Naga,a) = Naq1,3) = Naa,3) = Naa ey =
= Na1,2) = Nyg1.a) = Nya.4) = Nyg3,4) = 0
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The the gravitational force vector 7' (q) is given by

86C7
87

(@) = gPMu | s cn — 5088

3.2 Linearized Longitudinal Dynamics

In this section, we focus on the the longitudinal dy-
namics of the sphericle. corresponding to rolling in the

forward direction of the inner mass, without steering,

and neglecting the (nonoholonomic) coupling between
lateral oscillations and longitudinal motion. To ob-
tain such approximate decoupling between longitudi-
nal and lateral dynamics, it is expedient to consider
a linearized model of the sphericle. Although such
linearization will undoubtedly destroy controllability,
it provides a good approximated decoupled model for
the longitudinal dyvnamics (which are holonomic). The
linearized equations of the sphericle system are

& = Az + Bu (16)
Defining

’I‘Z{Zjl (1n

(dim(x) = 12) and if choosing as equilibrium point
the state + = 0. we get

r 0 p 0 017
-p 0 0 O
0 1 00
Ogxr 1 0 00
0 0 00
1 000
A= 0 110
0 0 0 1
-H 0 0
le!‘% 0 -H 0 04)<4
0 ;p‘l 0
L 0 0 0 J

were H := 5 1’,\ . and

(:mx-z
B = ~ . 0
A1
T.-

it results
rank ([B|4B]...[A"B]) = 6.

As the system has an intrinsic tendency to oscillate,
in order to ensure the validity of the quasi-static kine-
matic model used for steering (see sect. 2), a feedback
control law that reduces any undesired oscillations is
needed. Although to obtain the controller in general is

Figure 4: Projection of the states on a vertical plane
containing the inner mass direction vector.

an open problem, we consider here a 4-dimensional re-
duced model which is obtained by projecting the states
on the plane perpendicular to the axle of the wheels
(see fig.4). This results in an independent controllable
subsystem of the linearized model. Naturally, feed-
back laws designed for such subsystem will not control
rolling oscillations. However, maneuvers such as accel-
erating in the longitudinal direction, and slow steering,
typically will generate small such oscillations, which
will in turn affect the longitudinal dynamics (through
nonholonomic coupling) negligibly.

Let us consider the two dimensional reduced model
of longitudinal dynamics in fig.5. In this case, it is con-
venient to change the definition of the state describing
the inner mass position: while in the three dimensional
model the inner mass position is projected on the in-
ertial frame, here we use the inner mass position with
respect to the sphere position (see « in fig.5). Defining

£:=[0, o, 6, &7,

and using definition (17), we obtain {&, &, &, &} =
{z3, 23 — 27, 10, —T12}-

With respect to the model described above, we in-
troduce few modifications for the particular implemen-
tation of the sphericle. In particular, because the inner
moving mass is actuated in our prototype by stepper
motors, instead of considering torques, we will take as
inputs the derivatives of the pulse rates commanded
at the motors (i.e., up to neglecting quantization er-
rors, angular accelerations of the wheels). Also, we
consider explicitly the distance h along the radial di-
rection of the center of mass of the inner vehicle from
the sphere surface, and include a frictional dissipation
torque —pugf. The corresponding linearized model of
the longitudinal dynamics is

£ = Af + Bu (18)
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Figure 5: The two dimensional model. Notice that
Tapheres = /’0

where
0 0 1 0
. 0 0 0 1
A= _M.‘(}svh)g M“(I’;—h)g TRE
0 0 0 0
0
0

B =

=My h(p=h)+T,

with H := M,p*> + M,h* + I, + I,,. The subsystem
(18) is completely controllable. Measurements avail-
able for this system are ¢, o (by odometry) and the
pitch angle «v — # using an inclinometer. With these
ontputs, system (18) is also observable.

4 Conclusion

We have obtained a complete dynamic model for
the Sphericle, an interesting nonholonomic system for
locomotion. Dynamics have been computed in closed
form through use of the Euler-Lagrange equations in
guasi-coordinates, a method which fits well nonholo-
nomic dynamics. A simplified linear model of the lon-
gitudinal dynamics of the vehicle have been reported.
These models are fundamental tools for implementing
control laws for the vehicle. At the moment of writing,
no general control law for the sphericle is available,
while results on the stabilization of the longitudinal
dynamics were obtained by the authors that applied
satisfactorily to the experimental device, but are not
reported here because of space limitations.
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