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Abstract— Trajectory tracking of flexible link robots is a
classical control problem. Historically, the link elasticity was
considered as something to be removed. Hence, the control
performance was guaranteed by adopting high-gain feedback
loops and, possibly, a dynamic compensation with the result
to stiffen up the dynamic behavior of the robot. Nowadays,
robots are pushed more and more towards a safe physical
interaction with a less and less structured environment. Hence,
the design and control of the robots moved to an on-purpose
introduction of highly compliant elements in the robot bodies,
the so-called soft robotics, and towards control approaches that
aim to provide the tracking performance without a substantial
change in the robot dynamic behavior. Following this approach,
we present an iterative learning control that relies mainly on a
feedforward component, hence preserves the robot dynamics,
for trajectory tracking of a one-link flexible arm. We provide
a condition, based on the system dynamics and similar to
the Strong Inertially Coupled property, that ensures the ap-
plicability of the proposed control method. Finally, we report
simulation and experimental tests to validate the theoretical
results.

I. INTRODUCTION
Recently, inspired by the whole spectrum of living beings,

the research community started developing the next gener-
ation of robots: the so-called soft robots [1]. Soft robots
include systems with lumped elastic elements at the joints
[2] and robots characterized by continuum soft bodies [3].
The push that led to the development of soft robotics came
from the challenges that robots have to face when they are
asked to operate into an unstructured environment. In this
case, it is paramount that the robot possesses the ability
to effectively and safely manage physical interactions (with
objects, environment, human beings, or other robots), and a
compliant body is one of the key features to succeed in such
scenario [4].

To exploit the full potential of soft robots several planning
and control challenges need to be tackled.

This work focuses on one of these: the trajectory tracking.
This is a well-studied problem in the control and robotic
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(a) Robot scheme.
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Fig. 1. One-link flexible arm. (a) Scheme of the robot model and definition
of the dynamic parameters. (b) Experimental testbed.

community since the 80s [5]. At that time, the only goal
in robot control was to minimize the tracking error, and
the elasticity was included in the robot model to take
into account dynamic effects that could compromise the
performance of the controlled system. Not surprisingly, the
classical control approaches for flexible robots [6], [7], [8]
were built on two main ideas: the compensation of the robot
dynamics and high gain feedback. Typically, these methods
had the (often desired) effect of stiffening the robot behavior.

Nowadays, the scenario is different; softness is delib-
erately included into the robot structure and should be
preserved. This idea has been articulated into a model-
based paradigm [9] and a learning-based approach [10]. The
former, namely elastic structure preserving (ESP), proposes
a control strategy able to achieve motion tracking while
preserving the elastic structure of the system and damping
out the link oscillations. This is done by introducing a new
set of coordinates that reflects the desired damped dynamics
of the system. Conversely, the latter method does not require
any accurate description of the robot model. Indeed, in [10]
is proposed an approach based on iterative learning control
(ILC) that can lead to good tracking performance without
the alteration of the robot mechanical compliance. In fact, as
suggested in [11], the use of control techniques that mainly
rely on feedforward actions with low feedback gains results



in a minimal change in the robot dynamics (e.g. stiffness).
The aforementioned works are devoted to the control of

robots with elasticity lumped at the joints, which are all
actuated. In this work, we extend the approaches presented
in [10], [12] for a one-link flexible arm that is the simplest
flexible-link robot. ILC has been already applied to a flexible
link arm in [13]. However, the authors consider a linear
closed loop model. We here focus on the control of the
absolute angle of the tip of the robot. The main challenge is
given by the dependence of the relative degree on the position
of the joints and on the robot dynamic parameters. The main
idea to tackle this challenge relies on a condition similar to
the Strong Inertially Coupled condition introduced in [14].
Conditions on the robot dynamic parameters and trajectories
can be imposed to design a controller able to achieve good
tracking performance. The controller we design is purely
feedforward, thus it does not alter the robot impedance
[11]. A further contribution of this work is to prove the
convergence of the proposed iterative method, based on [15],
also in presence of control gains that weigh the derivatives
of the output. We extensively validate the proposed method
both in simulation and on a real hardware (Fig. 2).

This paper is organized as follows. In Sec. II, we introduce
the robot nonlinear dynamic model under analysis, and we
define the control problem. In Sec. III, we derive the control
architecture, whose effectiveness is validated in Sec. IV.
Finally in Sec. V, we draw the conclusions.

II. PROBLEM DEFINITION

We refer to the model of flexible link robot employed
in [16]. Here the system is modeled as a robot with a
combination of active and passive elastic joints, i.e.

M(q)q̈+C(q, q̇)q̇+G(q)+Dq̇+Kq = Fθ , (1)

where q, q̇, q̈∈Rn are the joint position, velocity and acceler-
ation vectors, respectively. We indicate with nA the number
of active joints, while nP is the number of the passive ones,
such that nA +nP = n. M(q) ∈ Rn×n is the inertia matrix of
the robot, C(q, q̇) ∈ Rn×n includes centrifugal and Coriolis
terms, G(q) ∈ Rn includes the gravity effect, and D ∈ Rn×n

is the damping matrix. K is the spring matrix, and it is
such that K = ∂V (q,θ)

∂q , where V (q,θ) : Rn ×RnA → R is
the elastic potential of a robot actuated by Series Elastic
Actuators (SEAs), and θ ∈RnA is the motor position vector.
We here assume that the motor dynamics is negligible, so
that θ can be considered as the control input. The matrix
F : Rn×RnA →Rn maps the active joint control input to the
dynamics of all the robot joints. Note that the matrix F is
such that the product Fθ is a torque1.

We follow the classic affine state-space form representa-
tion by defining the state vector x =

[
qT , q̇T

]T ∈R2n. Thus,

1Note that adopting a position control input is instrumental to obtain a
straightforward implementation of the method to the experimental testbed.
However, analogous results could be obtained employing a torque input. In
that case the map F would clearly be a selection matrix.

the system (1) can be written as{
ẋ(t) = f (x(t))+g(x(t))u(t) (2)
y(t) = h(x(t)) , (3)

where t is the time variable, and f (x) and g(x) are the drift
vector field and the control vector field, respectively. The
output function is h(x) ∈ RnA , while u ∈ RnA is the control
action. Given x0 , x(0) as initial condition, we also define the
map ψ : R2n×R→R2n, solution of the differential equation
(2), i.e., x(t) =ψ(x0,u, t), and the map ω :R2n×R→R such
that y(t) = h(ψ(x0,u, t)) = ω(x0,u, t).

It is instrumental for the description of the method to
define here the Lie Bracket operator, i.e., [ f ,g] = ∂g(x)

∂x f (x)−
∂ f (x)

∂x g(x) = L f g(x)−Lg f (x).
We impose to the system (2)-(3) the assumptions:

A1) the number of joints is equal to n = 2 , and the number
of active joints is equal to nA = 1. The latter limits
both the dimension of the input vector and of the output
vector. For completeness, we report in the Appendix the
explicit expression of the dynamic system under study.

A2) The maps ψ and ω are one-to-one.
A3) f (x),g(x),h(x) are Lipshitzs with constants f0, g0, h0 ∈

R, i.e., || f (x̄1)− f (x̄2)|| ≤ f0||x̄1− x̄2||, ∀x̄1, x̄2 ∈ R2n.
A4) The system has relative degree r (r > 0).

Given a desired output trajectory yd : [0, tf]→R (tf terminal
time), which is feasible, continuous and differentiable for, at
least, r times, ∀t ∈ [0, tf], the goal of this work is to design a
controller for a system in the form (2)-(3) under assumptions
A1-A4, able to track yd. Additionally, in order to preserve the
intrinsic compliance of the system, the control action must
be mostly feedforward [11].

III. PROBLEM SOLUTION

A. Control Design

The solution we propose for the tracking problem defined
in Sec. II relies on the ILC theory [17]. This framework
improves the tracking performance exploiting repetitions of
the desired task. The basic idea is to iteratively refine the
control input given the tracking results of the previous trials,
until a minimization of the error is achieved.

ILC is particularly suitable in case of compliant systems,
because it is a (mostly) feedforward control approach, thus,
it does not alter the robot dynamic behavior [11].

We here design a control technique based on pure feedfor-
ward ILC. Recalling the system (2)-(3) and the assumptions
A1−A4, we define the control law2 as

u j+1(t) = u j(t)+Γ j(t)e
(r)
j (t) , (4)

where the subscript j indicates the iteration number. Γ j(t) ∈
R is a learning gain which is both time and iteration varying.

The error signal e(r)j (t) is defined as

2The control law (4) requires an initial guess u0. This choice is elective,
however we employ the constant input required to keep the robot in the
starting position of the trajectory, i.e., yd(0).



e(r)j (t),
r

∑
i=0

γi

(
y(i)d (t)− y(i)j (t)

)
=

r

∑
i=0

(
L(i)

f h(xd)−L(i)
f h(x j)

)
γi︸ ︷︷ ︸

ϕ(x j ,xd)

+

+LgL(r−1)
f h(xd)ud−LgL(r−1)

f h(x j)u j ,

(5)

where, y(i)j (t) indicates the i−th time derivate of the output
y at the j−th iteration, while γi ∈ R,∀i = 0 . . .r are tunable
control weights. ud is the desired control input able to bring
the robot to the desired state xd, which is a robot state that
yields to the desired output yd. Note that both xd and ud are
unknown3.

The proposed controller is similar to those described
in [15] and [18]. The main difference between this work
and [15] is that [15] does not include any learning weights
γ . Conversely, the learning update in [18] is based on the
error of the current iteration, thus it is a feedback action,
differently from (4).

Theorem 1 (Sufficient Convergence Condition). Let us
consider a system in the form (2)-(3), and a desired output
trajectory yd(t). Under assumptions A1-A4, and assuming
x j(0) = xd(0), ∀ j, a sufficient condition for the convergence
of the control law (4) is that Γ j(t) satisfies∣∣∣1−Γ j(t)LgL(r−1)

f h(x j)
∣∣∣≤ ρ < 1 ,∀t ∈ [0, tf] ,∀ j . (6)

This means that, if (6) is fulfilled then e(r)j (t) → 0 when
j→+∞.

Proof. The proof is similar to that in [15]. However in [15]
there are no control weights γ . In the following we omit the
time dependency for the sake of clarity.

Given the control law (4) and the definition of ϕ(x j,xd)
in (5), we have

ud−u j+1 =
(

1−Γ jLgL(r−1)
f h(x j)

)
(ud−u j)−Γ jϕ(x j,xd)+

+Γ j

(
LgL(r−1)

f h(x j)−LgL(r−1)
f h(xd)

)
ud .

(7)
Given the definitions δu j , ud−u j and δx j , xd−x j, we

can write the inequality∣∣δu j+1
∣∣≤ ∣∣∣1−Γ jLgL(r−1)

f h(x j)
∣∣∣ ∣∣δu j

∣∣+ ∣∣Γ j
∣∣ ∣∣ϕ(x j,xd)

∣∣+
+
∣∣Γ j
∣∣ ∣∣∣LgL(r−1)

f h(x j)−LgL(r−1)
f h(xd)

∣∣∣ |ud| .
(8)

Then, recalling (5), we can compute a constant value ϕ0 ∈

3Note that xd and ud are required only to prove the convergence of
the method. From a practical point of view they are not needed for the
implementation of the method, which requires only the measurements of
y(i),∀i = 0 . . .r.

R such that∣∣ϕ(x j,xd)
∣∣= ∣∣∣∣∣ r

∑
i=0

(
L(i)

f h(xd)−L(i)
f h(x j)

)
γi

∣∣∣∣∣
≤

r

∑
i=0

∣∣∣(L(i)
f h(xd)−L(i)

f h(x j)
)∣∣∣ |γi|

≤
r

∑
i=0
|γiφi|

∣∣δx j
∣∣≤ r

∑
i=0

ϕ0
∣∣δx j

∣∣ ,
(9)

where φi ∈ R are constant values such that∣∣∣L(i)
f h(xd)−L(i)

f h(x j)
∣∣∣ ≤ φi

∣∣δx j
∣∣ ,∀i = 0 . . .r (i.e. Lipschitz).

Note that we assumed the output y to be differentiable at
least r times.

Let be η ∈R such that
∣∣∣LgL(r−1)

f h(x j)−LgL(r−1)
f h(xd)

∣∣∣≤
η
∣∣δx j

∣∣ (i.e. Lipschitz). Let (6) be true, i.e., 1 > ρ ≥∣∣∣1−Γ jLgL(r−1)
f h(x j)

∣∣∣. Then, we can derive the following
inequality∣∣δu j+1

∣∣≤ ρ
∣∣δu j

∣∣+ ∣∣Γ j
∣∣(η |ud|+ϕ0)

∣∣δx j
∣∣ . (10)

Defining µ , supt
{∣∣Γ j

∣∣(η |ud|+ϕ0)
}

, we obtain∣∣δu j+1
∣∣≤ ρ

∣∣δu j
∣∣+µ

∣∣δx j
∣∣ . (11)

Given assumption A3, we can write the following inequal-
ity for the system (2)∣∣δx j

∣∣≤ ∫ t

0
( f0 +g0 |δud(τ)|)

∣∣δx j(τ)
∣∣+∣∣g(x j(τ))

∣∣ ∣∣δu j(τ)
∣∣dτ .

(12)
Applying the Gronwall’s Lemma [19] to (12), leads to∣∣δx j

∣∣≤ ∫ t

0
c1
∣∣δu j(τ)

∣∣ec2(t−τ)dτ , (13)

where, c1 , supt { f0 +g0 |ud|} and c2 , supt
{∣∣g(x j)

∣∣}.
Substituting (13) in (11), leads to∣∣δu j+1

∣∣≤ ρ
∣∣δu j

∣∣+µc1

∫ t

0

∣∣δu j(τ)
∣∣ec2(t−τ)dτ . (14)

We define the λ−norm such as |(·)|
λ
, supt

{∣∣(·)e−λ t
∣∣}.

Then, multiplying both sides of (14) for e−λ t , λ ∈ R+, we
obtain∣∣δu j+1

∣∣
λ
≤ ρ

∣∣δu j
∣∣
λ
+sup

t

{
µc1

∫ t

0
e(c2−λ )(t−τ)dτ

}∣∣δu j(τ)
∣∣
λ
.

(15)
Grouping for

∣∣δu j
∣∣
λ

and solving the integral, leads to

∣∣δu j+1
∣∣
λ
≤

ρ +
µc1

(
1− e(c2−λ )tf

)
λ − c2

∣∣δu j
∣∣
λ
, (16)

which can be rewritten as∣∣δu j+1
∣∣
λ
≤ ρ̄

∣∣δu j
∣∣
λ
. (17)

For hypothesis ρ < 1, then, it is always possible to find a
λ such as λ > c2, that leads to ρ̄ < 1. As a result, (16) is a
control contraction, i.e.,

∣∣δu j
∣∣→ 0, and from (13) we have∣∣δx j

∣∣→ 0 for j→+∞, which implies e j→ 0.



Theorem 1 assures the convergence of the iterative method
in the case that (6) is fulfilled. This can be achieved thanks
to the following Corollary.

Corollary 1. Let consider a system in the form (2)-(3),
the controller (4) and the same assumptions of Theorem 1.
Choosing the learning gain Γ j(t) as

Γ j(t) =
1− ε

LgL(r−1)
f h(x j)

, with ε ∈ (0,1), ∀t ∈ [0, tf] , (18)

then the convergence condition (6) holds.

Proof. Under assumption A4, the proof comes directly by
substituting (18) in (6). The complete computation is not
reported here for the sake of space.

Remark 1. The proposed controller (4) is purely feedfor-
ward. This solution allows to avoid any alteration of the
stiffness of the system. However, a low gain feedback could
be used as in [10] or [12] but a convergence condition
different from Theorem 1 should be adopted.

B. Output Function Analysis

The choice of the desired output function h(x) is elective.
We here focus on the control of the end-effector angular
position, i.e., the summation of the link position variables.
However, at the end of the section we report some brief
remarks about other output functions. Analogous results
could be achieved for other choices of h(x).

Theorem 2. Let us consider a system in the form (2)-(3),
under assumptions A1-A4. Let be h(x) such as

y = h(x) =
[
1 1 0 0

]
x = q1 +q2 . (19)

If
q2(t) 6=

π

2
+π p,∀p ∈ Z,∀t ∈ [0, tf], (20)

then the result of Corollary 1 holds true.

Proof. The relative degree for the output function (19) is
r = 2 in most cases. However, it is worth noting that it
may change along the desired trajectory yd. Therefore, it is
required to study the behavior of the LgL f h(x).

Given the dynamic matrices reported in the Appendix,
we have that det{M(q2)} = b1b2−b3

2 cos(q2)
2. It is worth

noting that det{M(q2)} 6= 0,∀q given the symmetric structure
of the matrix M. So, we have

y = q1 +q2 =⇒ LgL f h(x) =
b3k1 cos(q2)

det{M(q2)}
. (21)

This means that (21) has a direct dependency on the
trajectory, and it vanishes for q2 =

π

2
+π p,∀p ∈ Z.

Remark 2. If the output of interest is the active joint
position, i.e., y = h(x) = q1 we have

y = q1 =⇒ LgL f h(x) =
b2k1

det{M(q2)}
. (22)

In this case, the relative degree does not vary in all the
workspace because LgL f h(x) is always non zero.

Remark 3. If the output of interest is the passive joint
position, i.e., y = h(x) = q2 we have

y = q2 =⇒ LgL f h(x) =
b2k1 +b3k1 cos(q2)

det{M(q2)}
. (23)

Interestingly, this leads exactly to the Strong Inertially Cou-
pled (SIC) condition proposed by Spong in [14]. This condi-
tion guarantees an inertial coupling between the active and
the passive joints of the robot. In this case, the nullification of
LgL f h(x) can be avoided with a specific design of the robot,
i.e., the dynamic parameters (see Fig. 2(a) and Appendix)
should be such as b2 + b3 cos(q2) 6= 0. This holds true if
m2l2

2 + J2 > a1l2m2, which is usually verified.

IV. VALIDATION

In this section we test the effectiveness of the proposed
method on a one-link flexible arm. We validate the controller
in six tasks, both in simulation and on real hardware,
comparing the results. The dynamic model described in Sec.
IV-A is used both for simulating the system and for tuning
the gain Γ j(t) of the controller (4). Γ j(t) is chosen such that
Corollary 1 holds, then fulfilling the convergence condition
in Theorem 1. We set the control parameter ε in (18) as
ε = 0.9. The value of the parameters γ is chosen depending
on the task. The initial guess u0 is chosen as the constant
input required to maintain the robot in the starting position
of the trajectory yd(0), i.e., solving Fu0 = G(q(0))+Kq(0).

A. Simulation Setup

We simulate a system with the form of Fig. 2(a). The
joint springs are assumed linear. We employ the dynamic
model reported in the Appendix. The dynamic parameters
are reported in Tab. I, where m, J, l, a, k and d are the
mass, inertia, length, center of mass distance, spring and
damper of each link, respectively. We chose these values to
have a dynamic system similar to the experimental platform
(Fig. 2(b)). It is worth noting that two values are reported
for the mass of the second link, because two different
configurations have been tested, one with a heavier payload
and one with a lighter one. The reason is that, as described
in (21), Γ j depends on the masses and the inertias.

TABLE I
DYNAMIC MODEL PARAMETERS.

m[kg] l[m] a[m] J[kg m2] k[N/rad] d[Ns/rad
Link 1 0.45 0.06 0.12 0.010 3 0.05
Link 2 0.45,0.15 0.06 0.12 0.005 3 0.05

B. Experimental Setup

Fig. 2(b) depicts the experimental setup. As elastic actu-
ator we employ a qbmove Advanced [20]. This is a variable
stiffness actuator, whose elastic transmission is realized
through an antagonistic mechanism that connects two motors
to the output shaft. To change the stiffness both motors have
to move in opposite directions, while a movement in the
same direction changes the equilibrium position. The motors
and the link of the actuator are equipped with a AS5045 12



bit magnetic encoder. The elastic torque τ and the nonlinear
stiffness function σ of the actuator are

τ = 2β cosh(αθs)sinh(α(q1−θe)) (24)
σ = 2αβ cosh(αθs)cosh(α(q1−θe)) , (25)

where α = 6.7328rad−1, β = 0.0222Nm, and q1 is the
Lagrangian variable of the first link. This actuator can be
controlled through θs and θe. θs is a parameter which tunes
the desired stiffness profile and will be set constant during
the experiments, while θe is the motor equilibrium position,
and can be assumed as control input, i.e., θ in (1). It is worth
noting that the resulting stiffness profile will be nonlinear.

In order to implement the passive joint, we employ a
second qbmove Advanced actuator, where θs is set constant,
while θe is set null. This pragmatic solution allows us to
have a passive joint equipped with a torsional spring and a
position encoder sensor.

As for the simulations, also in this case we test two
configurations: heavy (450g) and light (150g) payload.

Note that the controller (4) requires up to the r−order
differentiation of the output signal. These derivatives are
numerically estimated in the experimental phase. Thus, the
main differences between simulations and experiments are
related to the inaccuracy of the dynamic model, inaccuracy of
the estimate of the output derivatives and to the nonlinearity
of the joint stiffness.

C. Tested Trajectories

Both in simulation and on the real hardware, we perform
three tests in two different configurations. In particular, we
use three different trajectories and two different payloads.
The payload is 450g in the first case and 150g in the second
case. As output function h(x) we employ the absolute angle
of the tip of the robot, i.e., (19).

As desired trajectories we use:
1) a sinusoidal signal lasting for tf = 6s, i.e.,

yd(t) =
π

8
cos(t +π)+

π

8
; (26)

2) a minimum jerk signal that starts from the initial po-
sition y0 = 0 and reaches the final position yf =

π

4 in
tf = 10s, i.e.,

yd(t) = yf

(
10
(

t
tf

)3

−15
(

t
tf

)4

+6
(

t
tf

)5
)

; (27)

3) a minimum jerk signal analogous to (27) but with tf =
1s. This leads to a more challenging task.

The tested trajectories are such that Theorem 2 is valid,
thus the relative degree of the system is always r = 2 along
the trajectories. In each trial the starting configuration is
x(0) =

[
0 0 0 0

]T .
Tab. II lists the control parameters [γ0,γ1,γ2] employed in

each simulative and experimental trial.
In order to quantify the tracking performance of the

controller, we use as metric the root mean square (RMS)
error.

TABLE II
SIMULATIONS AND EXPERIMENTS CONTROL WEIGHTS ([γ0, γ1, γ2]).

Simulations Sinusoid Slow min. jerk Fast min. jerk
Heavy Payload [250,10,1] [250,10,1] [250,10,1]
Light Payload [250,10,1] [250,10,1] [250,10,1]
Experiments Sinusoid Slow min. jerk Fast min. jerk

Heavy Payload [200,0.5,0.5] [250,0.5,0.5] [80,1,0.1]
Light Payload [150,5,0.3] [250,5,0.3] [200,5,0.3]

D. Simulation and Experimental Results

1) Heavy Payload: In the experiments the stiffness pa-
rameter is set to θs = 0.524rad for both joints, that leads to a
joint stiffness equal to 5.04N/rad in case of zero deflection.

In the case of the sinusoidal reference (26), the iterative
method is executed for 15 iterations in the simulation and
for 30 in the experiments. Fig. 3 compares the simulation
and experimental results. Fig. 3(a) shows error evolution over
iterations, while Fig. 3(b) reports the tracking performance at
the last iteration. Figures 3(c-d) compares the joint evolution
obtained in simulation and in the experiment.

In the case of the slow minimum jerk reference (27),
the iterative method is executed for 15 iterations in the
simulation and for 30 in the experiments. Fig. 4 compares
the simulation and experimental results. Fig. 4(a) shows error
evolution over iterations, while Fig. 4(b) reports the tracking
performance at the last iteration. Figures 4(c-d) compares the
joint evolution obtained in simulation and in the experiment.
Fig. 5 shows a photo-sequence of the trajectory execution at
the last iteration.

In the case of the fast minimum jerk reference (27),
the iterative method is executed for 15 iterations in the
simulation. For the experimental trial only 20 iterations
were performed since the method already converged. Fig. 6
compares the simulation and experimental results. Fig. 6(a)
shows error evolution over iterations, while Fig. 6(b) reports
the tracking performance at the last iteration. Figures 6(c-d)
compares the joint evolution obtained in simulation and in
the experiment.

2) Light Payload: In the experiments the stiffness param-
eter is set lower, i.e., to θs = 0.35rad for both joints. This
leads to a joint stiffness equal to 1.57N/rad in case of zero
deflection.

In the case of the sinusoidal reference (26), the iterative
method is executed for 15 iterations in the simulation and
for 30 in the experiments. Fig. 7 compares the simulation
and experimental results. Fig. 7(a) shows error evolution over
iterations, while Fig. 7(b) reports the tracking performance at
the last iteration. Figures 7(c-d) compares the joint evolution
obtained in simulation and in the experiment.

In the case of the slow minimum jerk reference (27),
the iterative method is executed for 15 iterations in the
simulation and for 30 in the experiments. Fig. 8 compares
the simulation and experimental results. Fig. 8(a) shows error
evolution over iterations, while Fig. 8(b) reports the tracking
performance at the last iteration. Figures 8(c-d) compares the
joint evolution obtained in simulation and in the experiment.

In the case of the fast minimum jerk reference (27),
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Fig. 2. Simulation and experimental results for the sinusoidal trajectory in the heavy payload scenario.
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Fig. 3. Simulation and experimental results for the slow minimum jerk trajectory in the heavy payload scenario.

Fig. 4. Photo-sequence of the the last iteration of the slow minimum jerk trajectory in the heavy payload scenario.
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Fig. 5. Simulation and experimental results for the fast minimum jerk trajectory in the heavy payload scenario.
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Fig. 6. Simulation and experimental results for the sinusoidal trajectory in the light payload scenario.
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Fig. 7. Simulation and experimental results for the slow minimum jerk trajectory in the light payload scenario.

the iterative method is executed for 15 iterations in the
simulation. For the experimental trial only 20 iterations
were performed since the method already converged. Fig. 9
compares the simulation and experimental results. Fig. 9(a)
shows error evolution over iterations, while Fig. 9(b) reports
the tracking performance at the last iteration. Figures 9(c-d)
compares the joint evolution obtained in simulation and in
the experiment.

E. Discussion

Several choices for the initial guess u0 could be made to
speed up the learning process. However, we decided to test
the method in the worst case scenario, i.e., a constant initial
guess equal to the equilibrium torque. This is the reason
why the error at the first iteration is equal for each pair of
simulation and experiment.

Results show that the proposed method is able to improve
the tracking error, achieving satisfying tracking performance
in all the trials. This means that, even though the second joint
is passive, the controller is able to execute the task. In the
simulation case, the learning convergence is smoother, thanks
to the perfect match between the model and the knowledge
of the controller, and thanks to the good estimation of the
derivatives. However, also in the experiments the method

converges to comparably good tracking results. The RMS
error obtained at the last iteration averaged between all
trials is 0.003rad for the simulations and 0.018rad for the
experiments.

Note that q2 6= π/2 holds for all the performed tasks, thus
Theorem 2 is valid, and the relative degree is r = 2.

The most challenging task performed is the fast minimum
jerk (Fig. 6 and Fig. 9). In the simulations, this is perfectly
executed, while in the experiments there are slight oscilla-
tions in both configurations. This result can be linked to the
velocity and acceleration of the reference signal. Indeed, the
numerical estimate of these signals could reduce the tracking
performance.

V. CONCLUSIONS

This work deals with trajectory tracking of a one-link
flexible arm. The system is modeled with two elastic joints,
the first one is active and the second one is passive. The
goal is to obtain a controller able to achieve good tracking
performance while preserving the natural compliance of
the system. The proposed solution is a feedforward control
approach based on iterative learning control. We guarantee
the convergence of the method and the feasibility of the
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Fig. 8. Simulation and experimental results for the fast minimum jerk trajectory in the light payload scenario.

approach via a condition on the dynamic parameters of the
system and the trajectory.

Future extensions of this work will analyze the case of
multiple passive joints and will investigate also the applica-
bility of model-free approaches.

APPENDIX

We report here the full description of the considered
one-link flexible arm dynamics (Fig.2(a)). The robot elastic
potential can be written as

V (q,θ) =
1
2

k2q2
2 +

1
2

k1 (q1−θ)2 .

The dynamic matrices are

D = diag([d1,d2]), K = diag([k1,k2]), F = [k1, 0]T

M(q) =
[

b1 +b2 +2b3 cos(q2) b2 +b3 cos(q2)
b2 +b3 cos(q2) b2

]
C(q, q̇) =

[
−b3q̇2 sin(q2) −b3 sin(q2)(q̇1 + q̇2)
b3q̇1 sin(q2) 0

]
G(q)=

[
g0 (m2 (l2 sin(q1 +q2)+a1 sin(q1))+ l1m1 sin(q1))

g0l2m2 sin(q1 +q2)

]
,

where b1 = m2a1
2 +m1l12 + J1, b2 = m2l22 + J2 and b3 =

a1l2m2.
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