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Abstract—The Simultaneous Localization And Map
building for Servoing (SLAMS) problem with mobile
vehicles is considered. In particular, the map construction
of a structured indoor environment using data from
infrared sensors and low-cost cameras �xed on wheeled
vehicles is addressed. Accurate and ef�cient ready-to-use
map building for human and robot navigation tasks is
studied by using more than one vehicles in a collaborative
paradigm. Two vehicles are adopted to provide different
functionalities for a common explorative task: while one
robot moves in the unknown environment, collecting
visual data to construct a feature-based map, the other
one keeps it in sight using a visual servoing approach and,
contextually, extract salient geometric information of the
environment using homography techniques. Environmen-
tal information collected, from low-cost cameras �xed on
the wheeled vehicles, are coherently fused online to build
the map. In the proposed approach, the two autonomous
vehicles closely collaborate, in a sort of “eye-to-hand”
paradigm, where the moving robot plays the role of a
hand probing the environment, and the second robot acts
as the observing eye. This collaborative strategy allows
the exploration of large areas, maintaining a low level of
uncertainty in localization and mapping processes.

Experimental results on laboratory vehicles are re-
ported, showing the practicality and effectiveness of the
proposed approach.

Abstract—In questo lavoro si affrontano le tematiche
inerenti la costruzione di mappe e la localizzazione per
l’asservimento (SLAMS) di veicoli mobili. In partico-
lare è stato studiato il problema della costruzione della
mappa di un ambiente interno strutturato tramite sensori
infrarossi e telecamere di tipo economico, montati su
veicoli con ruote. Particolare attenzione è stata posta sulla
costruzione di mappe che fossero accurate, ef�cienti e
facilmente utilizzabili per la navigazione sia dagli esseri
umani che dai robot, utlizzando un’architettura multi-
robot di tipo collaborativo. Diverse funzionalità necessarie
per l’esplorazione collaborativa sono espletate dai due
robot utilizzati: mentre un robot si muove e raccoglie
dati dalla telecamera per costruire una mappa costituita
da punti caratteristici, l’altro robot lo mantiene nel
proprio cono visivo utilizzando algoritmi di asservimento
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visuale e, contestualmente, estrae informazioni geomet-
riche sull’ambiente utilizzando tecniche omogra�che. Le
informazioni, ottenute dai due robot sfruttando le tele-
camere �ssate a bordo, sono coerentemente fuse insieme
per costruire in tempo reale la mappa dell’ambiente.
Nell’approccio proposto i due veicoli autonomi collabor-
eranno a stretto contatto in una sorta di paradigma “eye-
to-hand”, dove il robot in movimento gioca il ruolo della
mano che sonda l’ambiente e il secondo assume il compito
dell’occhio che osserva. Questa strategia di collaborazione
consente di esplorare larghe aree mantenendo un basso
livello di incertezza nei processi di localizzazione e di
costruzione della mappa.

Si riportano i risultati sperimentali su alcuni ve-
icoli didattici, dimostrando la praticabilità e l’ef�cacia
dell’approccio proposto.

I. INTRODUCTION

Wheeled vehicles have a wide range of applications,
both in indoor and outdoor environments, and represent
one of the areas with larger potential for advanced
robotics. A very important trend in research related to
mobile robots is concerned with their capability of au-
tonomously navigate in structured or unstructured envi-
ronment. Typical vehicles tasks, such as path-planning,
localization, parking and general reasoning about the
working environment depend highly on an accurate
and robust representation of the world. Unfortunately,
any a priori information about the ambient surrounding
the robot and its relative con�guration is hardly ever
available in many application �elds.

Since the 1990s, the problem of map building has
been dominated by probabilistic techniques [1]. Since
then, the conjunction of the localization and mapping
problems has commonly been referred to as SLAM [2],
[3], or CML (short for Concurrent Mapping and Local-
ization [4]). Our proposed approach can be regarded as
Simultaneous Localization and Map building for Servo-
ing (SLAMS), in which a team of collaborating vehicles
explores the environment collecting visual information
for map building and acts as a single multi-distributed
sensor robot using recently developed visual schemes
[5], [6].

One of the most important aspect to be taken into
account in a classical SLAM context is the growth
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of positioning errors as the robots collects observation
from the environment. Without outside information, the
robot localization rapidly accumulates errors, corrupt-
ing the resulting map. This problem can be addressed
by using more than one vehicle in a collaborative
paradigm. A strong accent has been recently put on
distributed robotics systems for coordinated localiza-
tion, exploration, and mapping [7], [8], which can guar-
antee greater robustness and ef�ciency. Our proposed
approach is based on a heterogeneous multi-vehicle
system in which different kinds of information are used
to provide robust vehicles localization, avoiding odom-
etry errors, and consequently increasing the accuracy
of obtained maps.

Due to the error growth rate of dead-reckoning, a
very important problem to be addressed when local-
izing mobile robots in the environment is concerned
with the necessity of sensorization. Different sensory
apparatuses are available for mobile robots, such as
ultra-sonic sonar, laser scanners, infrared systems and
vision. In the literature the SLAM problem has been
solved, among others, by [9] using sonar sensors and
by [10] using laser scanners. This paper deals with
the problem of using economic, off-the-shelf cameras
to enable a cooperative team of autonomous robots
to build an accurate map of a structured environment
while navigating, without relying on a priori infor-
mation or arti�cial landmarks, and representing the
collected information in an human intelligible way.
The amount of information contained in the collected
environment images allows the use of algorithms to
extract geometric constraints on the objects in sight. In
this paper, homography techniques for plane extraction
and feature-based techniques will be addressed for map
building.

Another important feature of the SLAM problem
is the practical representation of the map, both from
a semantic and from an appearance point of view.
In the literature, typical maps representation are used
in [11] as occupancy grids or, in their 3D evolution,
in [12] as digital elevation maps. Resulting maps are
closely related to the used sensors, as can be seen in
[9] using sonar sensors or in [10] using laser scanner
sensors. Furthermore, map description is also correlated
to the adopted algorithm to represent the information re-
trieved. [13] elaborates visual information with complex
correlation algorithms off-line to produce a result that
can be regarded as a 3D image of the environment. In
this paper, we introduce real-time algorithms to produce
maps that represents the environment as it is in natural
3D space, easily usable by human or by a navigating
robot.

Within the paper, we present an effective solution to
the SLAMS problem with low cost �xed cameras on-
board the vehicles, by using a combination of previous

Fig. 1. Fixed frame < W >, Observing Robot and Moving Robot
camera frames < O > and < M >, and relative coordinates W ξ =
W [ξ1, ξ2, ξ3]T for the Observing Robot and W ζ = W [ζ1, ζ2, ζ3]T

for the Moving Robot.

results on visual servoing control techniques, computer
vision and map building techniques. Experimental re-
sults on a laboratory vehicles are reported, showing the
practicality of the proposed approach.

II. PROBLEM DESCRIPTION

Our approach is based on two cooperating vehicles to
overcome common SLAM problems, mainly odometry
growth errors and self-localization and mapping lack of
accuracy during the explorative task.

The cooperative architecture is essentially de�ned as
an eye-to-hand paradigm, detailed in what follows: a
Moving Robot (MR) senses the working environment
like a hand while the Observing Robot (OR) observes
the surrounding ambient like an eye (see �g. 1). This
collaborative strategy, joined with the resulting dis-
tributed sensing scheme, allows the exploration of large
areas, maintaining a low level of uncertainty in local-
ization and mapping processes and adding �exibility
and robustness to the whole process.

More precisely, MR explores the environment col-
lecting images used for building feature-based maps
online. Such maps are based on features whose coordi-
nates have been obtained with extended Kalman �lter
techniques, [1], [8]. Standard feature-based maps, used
among others by [14], [9], [10], are usually retrieved
from laser scanners or sonar sensors. Information con-
tained in visual images of the surrounding ambient
are richer of information than simple feature points.
However, feature-based maps are suf�cient for robot
navigation once a visual servoing approach is adopted,
as reported in [5]. Regarding cooperative visual lo-
calization constraints, MR has been equipped of a
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particular pattern – a chess board – easily detectable
by OR vision system, while for homography plane
extraction a wall detection and wall following algorithm
are used, based on infrared sensors information.

Based on the known pattern �xed on MR, OR pro-
vides an accurate localization of the Moving Robot with
respect to a �xed frame < W > (see �g. 1) using visual
information [15]. As MR explores the environment by
the wall following controller and collects information
about the distance of the wall, OR keeps MR in its
camera �eld of view using a visual servoing control
law [5]. As a straight regular wall is detected, the
associated texture is extracted by OR using vision
homography techniques. It is worthwhile to notice that
the exploration strategy adopted by MR is independent
from the localization methods used by OR.

To address economicity of applications, realistic as-
sumptions on the nature and quality of the vehicles
and of their sensorial equipment have been taken into
account. Although the presence of two unicycle-like
vehicles may be expensive, it is to be noticed that
dynamic errors and inaccuracy in the wheel actuators
are compensated by cooperation and sensor measure-
ments. Furthermore, although different sensors (such as
some models of laser range �nders, or omidirectional
cameras, or again pan-tilt heads) may not be affected
by conventional cameras accuracy limitations, these are
typically some orders of magnitude more expensive
than the considered cameras, which are readily avail-
able even in the consumer market. In our paper, an
accurate camera calibration has been employed to avoid
camera distortion [16], in order to use a reliable a
pinhole camera model of projection.

III. COOPERATIVE LOCALIZATION

Let’s consider two moving camera frames < M >
and < O > �xed on the mobile robots with the origin in
the camera pinhole, with the Zo axis directed along the
camera optical axis and with the Yo axis perpendicular
to the plane of motion and passing through the middle
point of the unicycle axles (see �g. 1).

Consider now a �xed frame < W > whose origin
is coincident with the origin of < O > when the
Observing Robot is in the initial con�guration, and with
Xw = Zo and Yw = Yo. Let W ξ = W [ξ1, ξ2, ξ3]T ∈
IR2×S denote the Observing Robot posture. Similarly,
let W ζ = W [ζ1, ζ2, ζ3]T denote the Moving Robot
posture. More precisely, (ξ1,ξ2) and (ζ1,ζ2) are the
cartesian coordinates of the middle point of the unicycle
axles while ξ3 and ζ3 are the orientation of the unicycles
between the Zo and Zm axis and the Xw axis, as
represented in �gure 1. The relative position between
the described frames is represented in �gure 2.

From its starting position, OR �nds the position
of MR’s �xed chess board pattern using the pattern

Fig. 2. Fixed frame < W >, Observing Robot camera frame
< O > and Moving Robot camera frame < M >. The coordinates
Pi of the i-th feature is expressed with respect to < M >. The
chess board pattern coordinates are expressed with respect to <
O >. Notice that, with the cooperative localization, it is possible to
estimates the M Tw and OTw transformation matrixes and therefore
expresses all the coordinates with respect to the �xed frame < W >.

Fig. 3. OR(1) observes and localizes MR(2); MR(2) approaches the
wall (3) reaching the border of OR(1) �eld of view; OR moves from
(1) to (4) by using visual servoing.

recognition algorithm; at this point, it grabs an image
of the localized pattern and tells MR to �nd and follow
the desired wall (position 1 and 2 in �gure 3). For
simplicity’s sake, we assume that the MR is placed at a
distance detectable by infrared sensor distance far from
the desired wall to map (the assumption will be avoided
in future by e.g. using a more ef�cient exploration
algorithm). The visual servoing controller [5] is started
and the Moving Robot is stopped when, during the wall
following task, the chess board pattern placed on MR
approaches the OR �eld of view border by a threshold
directly set on the image plane (position 3 in �gure 3).
The visual servoing controller parks the Observing
Robot using the stored desired image as target, with the
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desired accuracy (position 4 in �gure 3). When OR has
parked, it grabs a new desired image of the chess board
pattern needed for the servoing task and localizes itself
with respect the �xed frame < W > using MR as a
�ducial landmark. The global localization of the robots
is then obtained from the relative frame positions.

In the literature, the localization problem has been
addressed with a cooperative approach among the oth-
ers by [15], [17].

Within our approach, it is worthwhile to note that the
error on the global localization, as the robots move in
the unknown structured environment, is directly related
to the measurement sensor accuracy, therefore to the
camera calibration parameters.

The chess board pattern localization algorithm is
explained in the following. From the pattern image,
the set of characteristic points (features) are selected
with coordinates in the Observing Robot camera frame
OPi = O[p1, p2, p3]Ti .

The position of each feature in the image plane is
described by the perspective projection mapping Υ :
IR3 → IR2

Υ : OPi →
[

xi

yi

]
=


 αx

Opi
1

Opi
3

αy

Opi
2

Opi
3


. (1)

where (xi, yi) are the feature coordinates in the image
plane (see �g. 2). αx and αy are camera calibration
parameters that represent the focal length and the pixel
dimension scale factor on the image.

Assuming that the 3D characteristics of the pattern
are known, it is possible to invert equation (1) in a
least-squares sense and express the current position OPi

from the measured positions of the features in the image
plane and therefore the relative position of the two
camera frames < O > and < M >.

IV. COOPERATIVE MAP BUILDING

The map is built as a collection of planes with an ap-
propriate texture extracted from the environment. Such
texture is extrapolated with homographic techniques by
the video stream of the OR which is observing MR. The
wall position is known by OR thanks to the information
exchanged with MR while it is sensing the wall.

Introducing the homographic techniques, we can here
remember that, in homogeneous coordinate notation,
the homography is a plane to plane transformation
represented by the formulas:

H =


 c00 c01 c02

c10 c11 c12

c20 c21 c22


 (2)


 x′

y′

1


 = H


 x

y
1


 (3)

Where x and y denote the original pixel coordinates
while x′ and y′ denote the pixel coordinates in the
transformed image. In explicit notation the homography
between x′, y′ and x, y is given by

x′ = c00x+c01y+c02
c20x+c21y+c22

y′ = c10x+c11y+c12
c20x+c21y+c22

(4)

In this paper a particular homography is considered: the
projection of a generic plane in the environment in the
image plane. Notice that non degenerated homographies
are invertible, such as the one we considered.

To compute such homography, let Rw, Tw be the
matrix and the vector that characterize the af�ne trans-
formation of the chess board plane in to the wall plane.
Let express a point on the wall with respect to the
local wall coordinates. The relation between the point
X = (X, Y, 0, 1)(Rw,Tw) and its projection on the image
plane is given by:


 u

v
1


 = K(R|T )(Rw|Tw)




Xw

Yw

0
1


 ;

= K(R|T )(w1w2Tw)


 Xw

Yw

1


 (5)

Where Rw = (w1, w2, w3) and K(R|T ) is the matrix
of the projection of a generic point in the image plane
(typical of the pinhole camera model), K represents
the camera intrinsic parameters and (R|T ) is the roto-
translation between MR and OR. Relation described
above is the same of equation 1 in homogeneous
coordinates.

The homography matrix H is then computed as
follows:

H = K(R|T )
(
w1w2Tw) (6)


 u

v
1


 = H


 X

Y
1


 (7)

In order to obtain the wall plane coordinates from the
image coordinates it is suf�cient to apply the inverse
homography H−1.

Such plane transformation is correct if the point p of
the image plane belongs to the wall plane (Rw, Tw). In
�gure 4 an example of such computation is reported.

Once the homography is computed, the texture to be
applied to the wall is obtained.

In such textures some other object can appear if they
lie between the camera and the wall also if they do not
lie on the wall. Obviously, an example of such kind of
object is the MR itself.
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Fig. 4. Perspective projection inversion example: homography from
image plane (top) to chess board plane (bottom). If all the elements
of the top image would lie on the chess board plane, the bottom
image coincides with a portion of the image that the camera would
take when placed with focal axis perpendicular to the chess board.
In fact, squares of the chess appear to be exactly squared.

Further work will provide techniques able to extract
the elements of the image that really lie on the extracted
plane. Such techniques will involve stereo vision from
one or more of the Observing robots.

With the homography technique described above,
a texture of the wall has been obtained. In order to
reconstruct a 3D real time representation of the wall
from the texture, an OpenGL-based tool has been
implemented.

As the Moving Robot follows the room’s walls
a feature-based mapping of the environment can be
contemporarily performed to produce a more infor-
mative map, collecting a video stream from its �xed
camera mounted as explained in �gure 1. 3D feature
position estimation is performed using an extended
Kalman �lter algorithm, widely adopted for real-time
execution of SLAM [18], [2]. To overcome extended
Kalman �lter computational complexity, memory oc-
cupation and lack of guaranteed convergence that neg-
atively affect its performance, much work has been
done in scienti�c community, such as in [8], [14].
Our implementation of the extended Kalman �lter is
based on the external localization of the robot and
on a dynamic dimension of the estimated state space
S, due to changes in tracked features number. More
precisely, from the starting image of the MR optical
�ow, a set of n features are autonomously selected.
The extended Kalman �lter state S is then �lled with
the coordinates of the Moving Robot ζ, obtained by
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Fig. 5. Initial estimated feature position and related trajectories
during the extended Kalman �lter estimation. The simulated robot
trajectory along the followed wall is also reported.

500 550 600 650 700 750 800 850 900

�200

�150

�100

�50

0

50

100

150

200

X
w

 axis (mm)

Z
w

 a
xi

s 
(m

m
)

Simulated Feature Estimation

Estimated
Position

Real
Position

Estimated
Position

Real
Position

Fig. 6. Final estimated feature position. Notice that the most relevant
position inaccuracy is on the Zm axis, as expected from theory once
the robot moves along a straight line towards the feature to estimate.

the external localization, and the 3D coordinates of
the selected features referred to the < W > frame:
S =

[
ζ1, ζ2, ζ3, p

1
1, p

1
2, p

1
3, p

2
1, . . . , p

n
1 , pn

2 , pn
3

]T
, where

pi
j stands for the j-th coordinate of the i-th feature.

Notice that the dynamical model of the proposed state
space Ṡ is rather simple because the feature are motion-
less in < W > and the localization of MR is obtained
by an external process that is uncorrelated from the
whole estimation process. Assuming an accurate exter-
nal localization, the covariance matrix of the process
is therefore a matrix �lled with zeros. The covariance
matrix of the measurement noise – the image plane
coordinates noise of the feature – has been set to an
identity matrix, assuming that the noise is gaussian with
one pixel of uncertainty.

As the Moving Robot follows the wall, the selected
features are tracked in the image by a standard feature
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Fig. 7. Experimental set: MR follows the wall and brings the chess
board pattern while OR localizes it and builds the map.

tracker algorithm. A �lter step is performed once the
Moving Robot collects features image plane coordi-
nates contextually with the localization retrieved from
the Observing Robot. Initially set to an identity matrix,
as the �lter proceeds, the covariance matrix of the
extended Kalman �lter will be partitioned in sub-blocks
of dimension 3 by 3, con�rming that the estimation
processes for each feature are completely uncorrelated.

As the i-th feature approaches the limited �eld of
view of the camera �xed on MR, the state S and the
covariance matrixes are coherently updated removing
the i-th feature estimated values and fusing them in the
map – 3D coordinates with relative con�dence.

Simulation results, reported in �gure 5 and 6, demon-
strate the practicality and convergence of the proposed
extended Kalman �lter structure. It is worthwhile to
note that the MR �xed camera has the relative < Zm >
axis directed along the direction of the linear velocity.
As the Moving Robot follows the desired wall, it moves
towards the feature to estimate therefore a position
inaccuracy along the direction of the motion has been
noted, as expected from theory.

Finally, homographic information of OR can be
coherently fused in a 3D map with the feature-based
map produced by MR.

V. EXPERIMENTAL RESULTS

For the experiment a low-cost apparatus was em-
ployed, to highlight the robustness and applicability
potential of the proposed technique. The experimental
setup was comprised of two K-Team Koala vehicles
[19], each one equipped with a cheap Kodak EZ200
web-cam [20] placed on the front part of the robot
platform. The K-Team Koala vehicle has two symmetric
rows of three wheels on its sides, each actuated by
a single low-resolution stepper-motor actuator. Such
conditions make it hard to use odometry for local-
ization and control, and strongly motivates the use

Fig. 8. Experimental set: snapshot of the environment to map.

Fig. 9. Experimental results: OpenGl 3D view of the mapped
environment. The chess board pattern could be cut off the map
without loss of information postprocessing the obtained data or using
stereo vision.

of vision apparatuses for sensing and servoing. The
vehicles communicate each other by a wireless con-
nection and an appropriate protocol. The controllers
are implemented under Windows XP on two identical
1600MHz Pentium IV laptops mounted on-board of
each vehicle. The Intel OpenCV [21] libraries are used
for streaming video acquisition and features tracking.
The hardware communication between the robots and
the related laptops is performed by a RS-232 serial
cable.

The robots explore a structured indoor environment
(see �g. 7) building a visual map, based on textures of
the walls. By comparing the picture reported in �gure 8
and the map in �gure 9, it is possible to appreciate
the precision of the reconstruction: the textures are
correctly placed thanks to the good localization of the
MR provided by the OR. In �gure 10 and 11 the top
and global OpenGL 3D views of the map are reported,
showing that two perpendicular walls of the room are
correctly mapped. It is worthwhile to note that, during
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Fig. 10. Experimental results: OpenGl bird’s eye 3D view of the
mapped environment. The geometric constraint of the wall has been
coherently represented in the resulting map.

the manoeuvres to go from one wall to another, MR is
not aligned with any wall and therefore OR reconstructs
a map with a lacking part in correspondence of the
room’s angle.

VI. CONCLUSIONS

In this paper, a new collaborative control schemes
able to solve the SLAM problem, named Simultaneous
Localization and Map Building for Servoing (SLAMS),
has been proposed. To address economicity of applica-
tions, realistic assumptions on the nature and quality
of the vehicles and of their sensorial equipment have
been considered. Accordingly, the control scheme uses
exclusively information from proximity infrared sensors
and conventional cameras �xed on-board the vehicle,
explicitly ignoring odometry data. Two autonomous
vehicles closely collaborate to explore the structured
environment, realizing an effective distributed sens-
ing architecture. The collaborative strategy allows the
exploration of large areas, maintaining a low level
of uncertainty in localization and mapping processes
and overcoming the sensors inaccuracy. Using visual
sensors the adoption of sophisticated computer vision
techniques is allowed, towards a robust and accurate
solution to the SLAMS problem. Experiments on a
low-cost platform has been executed, assessing both the
practicality and effectiveness of the proposed approach.
The collaborative control scheme joined with the visual
servoing control techniques proposed will be extended.
For example, distributed sensorial information could
be fused, generating an accurate map of structured or
unstructured environments.
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