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Abstract

In this paper we describe work being done at our Department to make the Robotics laboratory
accessible to students and colleagues, to execute and watch real-time experiments at any time and
from anywhere. We describe few different installations, and highlight the underlying philosophy,
which is aimed at enlarging the lab in all the dimensions of space, time, and available resources,
through the use of Internet technologies. In particular four experimental set-ups with respectively
hardware and software architecture description are presented: the DC motor, the magnetic levitator,
the Non-Holomonic Motion Planner (NHMP), and the Graphic Environment Tool.

1 Introduction

In the recent past, Internet and WWW technologies have been impacting robotics rather profoundly
under many regards. In the first place, and most basically, their immense popularity attracted the
interest of common people to advanced technologies, which in part explains the renewed vigour
of Robotics (widely felt as a companion technology to computers and the internet), and the new
expectations and challenges posed by the society to Robotics research.

More directly, many applications have been developed to date that interface robots and the web.
The Mercury project1 (probably the earliest example of robots on the web), and the PumaPaint2

project are examples of installations that explored various ways of social and artistic interactions
with robots on the web. Technically, they consist in interfaces allowing to specify certain tasks to
be accomplished by using a limited class of specific functions. Starting with the work of Taylor,3

various sites have developed interfaces to program a robot arm or vehicle (see e.g., 4–8) through
the net. Purposes vary from executing traditional robotic tasks, such as picking and placing parts,
to wandering in museums and interact with people. A web site for interactive design of benchmark
problems in planning nonholonomic vehicles motions, and for collecting from the web different
proposed solutions, was presented in 9.

Among the many advantages offered by internet robotics, there is the possibility of offering
students wider access to University laboratories in order to exercise on an experimental setup
notions they have learned theoretically in the classroom or on books. In the domain of robotics,
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the amount and quality of lab practice is often limited by limitations on the number of robot
workstations available; on the freedom in exercising, due to security constraints; on time and
hours, due to staff schedule; and on the variety of robotic devices.

The development of internet-based experimental set-ups accessible by students has been going
on since several years at the Faculty of Engineering of the University of Pisa,9–12 mainly driven by
the demographic pressure to which our Faculty was and still is being exposed. In particular, the
increasing number of students enrolling in engineering courses, together with difficulties in enlarging
existing didactic laboratory facilities, prevent each student to have access to a proper number of
laboratory experiences. This ultimately risks to jeopardize the reaching of basic and advanced
engineering skills. The work being done at our University to virtually expand the Robotics Lab,
and make available to students and colleagues a larger number of experiments, at ease from their
home and at their preferred working hours, is described in this paper. In particular, we will present
in detail four installations. The first two are remote experimental facilities on a basic DC motor
control problem and a Levitator Control Systems. The user can access the experiments via a
web–based queuing mechanism, choose among various types of experiments, make her/his choice
about the type of controller, the sampling time and other parameters, then execute the experiment,
watch it through a webcam and retrieve experimental data from the real plant. The third gives the
possibility to apply path planning algorithms to a unicycle–like experimental hardware. Through a
camera it is possible to see the motion of the car between obstacles. Finally, the fourth installation
is a more complex environment for robot programming, simulation, and execution on different
hardware platforms. The program provides a high-level interface to multiple robots, allowing
easy programming, debugging, simulation, and finally interpretation in the proprietary language
of the chosen target robot. The user can check execution of the program by visualizing the robot
operation through the browser. The program is intended primarily for teaching robot programming
to students. Possible extensions towards a device-independent, graphical programming language
for robot programming in automated factories can be envisioned.

Installations, described in this paper, can be found at the following web page:
http://www.piaggio.ccii.unipi.it/robotics/telelab-eng.html

The realization of the above mentioned experimental set-ups has led more recently to the par-
ticipation of the Pisa team to nationally funded projects focused on the realization of e-learning
training courses in robotics. To reach this goal, a suite of support tools has been designed and is
currently being implemented so that the existing laboratory experiences can be upgraded to become
proper learning objects. In this paper we describe our current effort in producing self-assessment
capabilities, tutoring procedures, and training evaluation procedures, which are considered among
the tools that have a major impact on the students learning process and on the incremental design
and evolution of the system.

The paper is organized as follows: the next three sections are devoted to the description of the
experimental set-ups and of their hardware and software architecture; section two focuses on the
basic experiments (DC motor and magnetic levitator), section three on the Non-Holomonic Motion
Planner (NHMP), and section four on the robot programming platform. Section five describes the
upgrade of the experimental set-ups toward learning objects, which is currently in progress. Finally,
some conclusions are given.

2 DC Motor and Levitator Control systems

The first two online experiments that have been developed are the DC Motor and the Levitator
Control Systems. The primary aim of these experiments is to allow students to gain practice in



Figure 1: The Magnetic Levitator experimental setup developed by “Laboratorio Didattico Speri-
mentale” (LADISPE), Politecnico di Torino

Figure 2: JAVA interface to the online experiments

the design of controllers for open–loop stable and unstable plants respectively.
The hardware of the DC Motor control system is quite essential and consists in an inexpensive

brushed DC motor, a PWM power amplifier, and an incremental encoder. The hardware of the
Levitator Control System consists in a Levitator setup (see fig.1) realized by LADISPE, Politecnico
di Torino. Dedicated PCs, operating under FreeBSD and RT–Linux respectively, support both
the digital controller implementation and the Internet communication. The latter consists in a
videoconference broadcasting tool (VIC v2.8), and in a downloadable JAVA applet. The digital
controller is implemented as a routine in the OS kernel, realizing a digital linear filter between
past inputs (encoder measurements) and outputs (control signals sent to the D/A port), of up to
the sixth order. The Graphic User Interface (GUI) of both online experiments are quite similar.
Connecting to the main page of the remote lab, the user can download a JAVA graphic interface to
control the experiments, appearing as in fig.2. By clicking the Camera button, a videoconference



Figure 3: Live image of the experimental hardware of the DC Motor

session is started, and live images of the experimental setup are shown as in fig.3 (for users that
do not have a videoconference tool installed, a free software is made available). Users can access
the experiments by registering a nickname into a queue of users. The queue, which at present has
a capacity of 10 users, is served FIFO, and is implemented by a JAVA class provided by the JDK
JAVA developer toolkit. When the queue ahead has been served, the user is given access to a mask
for setting various choices, such as: reference signal type (step, ramp or sinusoidal) and amplitude;
type of controller class (PID, transfer function); type of analog-to-digital conversion (forward and
backward Euler, Tustin); sampling time, etc.. Upon clicking the OK button, parameters are passed
to the PC controller, and the chosen experiment is executed, while the user watches the effects
of her/his choices in real time. At the end of the experiment, several data about the hardware
(e.g. shaft position and velocity, tracking errors, motor currents and voltages of the DC Motor)
can be plotted with such convenient utilities as interactive zooming and grids (see examples in
fig.4 and fig.5). Furthermore, data can be saved in local files by the user for later examination
and analysis. The remote experiments can be used by the instructor or by the student himself to
grade the student’s preparation. To this purpose, various useful performance indexes (ISE: Integral
Square Error, ITAE: Integral Time–Absolute Error, ITSE: Integral Time–Square Error, and IAE:
Integral Absolute Error) are evaluated automatically at the end of the experiment, and a list of
“top” users is updated (see fig.6). We have found that this video–game inspired feature helped
much in motivating the student’s attention.

3 The Non Holonomic Motion Planner

Another online tool is based on the Non Holonomic Motion Planner Benchmark. Such bench-
mark, is an interactive environment available on the World Wide Web intended to allow fair and
thorough comparison of different techniques to solve a basic problem in nonholonomic motion plan-
ning. By connecting to one of the server sites, users, potentially unaware of the technical subtleties
of the planning problem, but well conscious of his application needs, can design the benchmark
problem that is most significant to his purposes. Users can then obtain different solutions from



Figure 4: Plot of positions of the DC motor in a typical experiment

Figure 5: DC motor current in the DC Motor experiment

several algorithm providers, and compare them both qualitatively (by graphic display), and quan-
titatively. Providers implement their own algorithms at their sites, with wide freedom of choice in
programming language, computational architecture, etc., while complying with few simple protocol
conventions. It is believed that similar usage of the Web, easily extendable to domains other than
NHMP, can usefully contribute to the fair comparison of result among researchers, as well as to
the diffusion of advanced research results towards application–oriented users.

The GUI of the NHMP has been conceived to allow non–expert users to simply interact and
practices with the online experiment. On the right–side of the GUI, the user is allowed to choose
from different path–planning algorithms, and also can test their own by download it on the server
of the application (see fig.7). After the setting is completed, the button See Motion allows the user
to watch the simulation results of the chosen path planning algorithm as in fig.8.

The NHMP has been recently updated with the possibility to apply path planning algorithms
to an experimental hardware developed in our lab. The experimental hardware, depicted in fig.9,
consists on a webcam rigidly connected to a platform. Two wheels, which both are actuated by



Figure 6: Performance indices are evaluated, and exercises are ranked automatically by the system.

Figure 7: Java interface of the Non Holonomic Motion Planner. Users can insert in the grid
both start and goal positions of the non–holonomic vehicle (blue and red, respectively), and create
obstacles (yellows), to test the path planning algorithms

Stepper Motors, are responsible of the movement of the platform in planar coordinates (x, y, θ).
In a unicycle–like fashion, the movement of the platform is Forward (FW)/Backward (BW) if both
wheels rotate Clockwise (CW)/Counter–Clockwise (C–CW) at the same velocities, otherwise the
platform rotates CW/C–CW. The camera, during the motion, continuously watches regions of a
figure depicting a “unicycle” (a yellow square) at the center of a green square, and whose position
is fixed. This implies the motion of the camera is perceived by the online user as a movement of
the unicycle in the square region (see fig.10).

The Internet communication, and the visualization of virtual obstacles representing those chosen
by the user, are provided by a free Videoconference Broadcasting Tool we programmed for this
experiment.



Figure 8: Highlight of the NHMP interface showing the simulation results of the path planning
algorithm.

Figure 9: Experimental setup of the NHMP

4 Graphic Environment Tools for Remote Robot Program-
ming

The development of this site (dating back to 1997, see 11) was aimed at providing students at
their first robot programming course, with means for building, checking and simulating an abstract
robotic program, compiling it for a few different robot arms, and watch the actual execution of the
program on one of the arms.

The rationale behind this installation is that robot programming languages are still very often
of robot manufacturers property, and are sometimes specific for a given robot model. The coex-
istence of many different programming languages for robots is clearly inconvenient for industries,
as it makes it necessary to train programming personnel specifically for each device, and severely



Figure 10: How the NHMP works. The movement of camera reference from C1 to C2 (left), is
perceived by the online user as a movement of the unicycle reference from U1 to U2 (right). Note
that virtual obstacles are rigidly moved with the camera

limits reuse of software. The number of subtle differences in languages also makes teaching robot
programming at the earliest educational levels more difficult than it should. Naturally, specificity
of languages is to some extent dictated by specificity of robot hardware (number of joints, joint
limits, etc.). However, at the highest levels of the language abstraction hierarchy (i.e., at the object
and task levels), it is natural to recognize that all robot arms share a device-independent set of
primitives, which could be used as a natural basis for a common language for robots.

The quest for a general-purpose language, to uniformly program different robotic devices, mo-
tivated several researchers to adapt universal programming languages such as Pascal or C with
specific libraries for robots. Among the earliest and most successful projects in this direction is
the RCCL package developed at the McGill Research Centre for Intelligent Machines.13 Several
researchers are also experimenting with object–oriented robot programming languages, to accom-
modate for uniform and transparent treatment of different components of the robotic system, such
as sensorial sources (see e.g. 14).

Our project’s aim was to provide a programming language of a rather wide generality, which
also integrates modern graphic user interface tools to achieve an intuitive programming interface
easy to teach to an undergraduate, or even high-school, level. Inspiration to our work came in part
from the Onika Project at Carnegie Mellon University,15 consisting in a multilevel human-machine
interface for reconfigurable real-time control systems, programmed through icons, to interact with a
real-time operating system in the context of a reconfigurable software framework to create reusable
code. Onika presents appropriate work environments for both engineers and end-users applications.
In particular, it verifies that all jobs are complete and syntactically correct. Onika has been fully
integrated with the Chimera real-time operating system in order to control several different robotic
system in the A.M.L. at C.M.U..

The Graphic Environment Tools (GeT) for remote robot programming is an integrated teaching
tool, which allows users to program at their ease, through an Internet connection, one of several
exercise tasks that an instructor may prepare. The philosophy of using GeT is to dispose of
a hardware installation comprised of a host server, running the Web interface and servicing the
application, and several target servers, each managing directly a robot arm (see fig.11) via a CGI
script. The core of the installation is a JAVA applet providing a graphic robot language with a basic
instruction set, and an interpreter for different robot controller languages. The user connects to



Figure 11: An example of a hardware architecture using GeT

the host server via any browser that supports Java Virtual Machines (JVM). Once connected, it is
possible to start the videoconference broadcast (see fig.12) by clicking on the SCORBOT CAMERA
button. Furthermore, by pressing the START button an instance of the Editor class is created in a
new window on the user’s computer. The structure of the GeT editing applet, illustrated in fig.13,
is comprised of two main parts: a Program Score, initially blank (top); a Workspace Description
for the robot and task (bottom left); and a Command Icon repository area (bottom right).

The Workspace Description area includes a graphic representation of the robot arm and its
environment, including sensors, for the programming task to be executed. Information such as
initial positions of objects, and naming of sensor–related variables are reported in this area (see
fig.14).

The Command Icon Repository collects icons for available commands, divided in two sets. By
clicking on the Movement tab, a set of primitives for controlling robot movements are displayed,
including such commands as HOME, MOVE TO, etc. (see fig.15 on the left).

By clicking on the Flow tab, a set of conditional and looping constructs are offered, including IF,
LOOP, RESET, etc. (see fig.15 on the right).

In general, a large amount of icons can be used to program a task. In this case, the readability
and the comprehension of the program can be increased by the development of a Macro Repository
area that is currently under study. This area should allow students, and teachers, to create new
program icons simply starting by a GeT program written with Movement and Flow icons. These
icons will represent what is called procedure in C language (see fig.16). The user builds her/his own
program for the specified task by simply dragging and dropping commands from the Command
Icon to the Program Score. The score can be scrolled back and forth, and altered by moving,
exchanging, and deleting cells. Command icons become active when in the Program Score, and a
cell editing command is activated by clicking on the cell (see fig.17). Arguments to commands can
be set by choosing the Data Set option in the cell edit menu. For instance, the parameter mask



Figure 12: A webcam view of the target robot arm.

for a MOVE command are shown in fig.18. Only once the user has completed editing the program,
this can be validated for the robot arm. By choosing the Compile option of the Project menu, the
graphic program score is parsed and checked for possible syntax errors and logical inconsistencies.
Finally, the program is validated with respect to kinematic and hardware constraints, such as e.g.
workspace limitations and joint velocity saturations.

Upon validation, the user can simulate the program via a simple tool included with the applet.
The simulation window (see fig.19) contains a graphical panel showing the robot arm simulating
the execution of the program. A command console with buttons to change the viewpoint, activate a
step by step or a continuous simulation, or exit the simulation is also contained. After a successful
validation phase, the program is translated in the programming language for the target robot arm.
By clicking on the Send tab of the Compile menu, the program is sent to the target controller, and
executed by the target robot arm as soon as this becomes available. Although the videoconference
is broadcasted (users can simultaneously view what the robot is doing), access to the GeT applet
by multiple remote users are regulated in mutual exclusion by a queuing mechanism implemented
at the host server level.

4.1 Implementation Details

In our present implementation, the host server is an Intel Pentium II 350Mhz with 64MB di RAM
and a 10GB hard disk, operated under Windows XP and communicating with the robot via a
RS232 link. The web camera is connected via a parallel port and is operated under the Microsoft
NetMeeting software. A robot Scorbot-er V plus, produced by Eshed Robotec BV, is presently
connected to the interface. This is an anthropomorphic 5-axis robot arm, whose controller uses a
proprietary language.

Recently, the hardware of the GeT has been upgraded with a sensorized platform useful for
pick–and–place experiments. The platform has a cylindrical shape (see fig.20), and it is sensorized



Figure 13: The GeT applet appearance.

by three ON/OFF touch sensors disposed at the vertices of a triangle inscribed to the base circum-
ference (see fig.21). The map between end-effector positions XE and sensors values (S1, S2, S3) is
as follows 



XE ∈ (S1, G, S2) → (1, 1, 0)
XE ∈ (S2, G, S3) → (0, 1, 1)
XE ∈ (S3, G, S1) → (1, 0, 1)
XE ∈ (S1, G, S1) → (1, 0, 0)
XE ∈ (S2, G, S2) → (0, 1, 0)
XE ∈ (S3, G, S3) → (0, 0, 1)

where (a, b, c) represents the sector of the circle with center b between the two points a and c
belonging to the circumference.

Such map can be adopted easily by users so as to identify the region of the platform in which
the robot end–effector belongs to. By this fact, users can develop algorithms, and GeT programs,
in wich the position of the end–effector is recursively adjusted to find the goal position (placed at
the center of the platform).

5 From laboratory experiments to learning process

The current evolution of the experimental systems toward learning experiences, or ”learning ob-
jects”, in the e-learning community jargon, is now described. The ultimate goal of this develop-
ment is that of constituting a network of remotely accessed laboratories for web-based education
(e-learning) in robotics and automation. In order to reach the objective, several actions are being
taken. Some of these actions are related to the general network structure (sharing of metadata
descriptions and of authoring and knowledge repository tools, definition and implementation of



Figure 14: Graphic visualization of the robot workspace.

a common administrative management facility, etc.). Other actions require the tailoring to the
robotics experiments presented in the previous section of general guidelines to be followed in the
network. In particular, the general guidelines require that each experiment is complemented by the
following objects:

• authentication and traceability of the students;

• instructional material on the specific topics addressed by the experiments, in the form of an
hypertext document;

• a set of tests proposed to the students, with automatic evaluation of the results, to provide
the students of a self-assessment capability;

• tutor interaction tools, in the form of a bulletin board and a FAQ list (asynchronous interac-
tion)

• procedures for the evaluation of the learning object

A system of access control through authentication is being established. The access control will
limit the availability of the additional learning tools to registered students; however, the possibility
to interact with the experiment from unregistered students will be kept.

Self-assessment tools are being designed in the form of ”figure of merits” on the performance of
the student proposed solution on given test cases, in comparison with a standard proposed solution
and with the solution obtained by the other students in the same course. This approach has
already been implemented on the two basic experiments (DC motor and magnetic levitator)through
standard performance measures well-established in the control and automation literature. For the
two robotic set-ups, however, the definition of figure of merits is not that straightforward. To our



Figure 15: Left: The set of robot movement primitives, Right: The set of conditional and looping
commands

Figure 16: An example of an icon that can belong to the Macro Repository area: the TAKE-THE-
OBJECT icon. Using Movement and Flow icons, user must insert a minimum of three icon in the
Program Score (up): OPEN, MOVE TO and CLOSE. Using a Macro icon of this program (bottom),
user will add only an icon to the Program Score, and will specify the (relative or absolute) position
of the object.

knowledge, there does not exist a single standard quantitative measure of performance of planning
algorithms; there are indeed several different choices, in terms of failure/success on test cases, time
to accomplish the planned task, computational time of the planning algorithm, complexity of the
planning algorithm, complexity of the planned manoeuvre, etc. Indeed, the peculiarities of the tasks
to be planned may require different performance measures on a case-by-case basis. Starting from
this consideration, two different significative measures of performance have been enucleated. For
the NHMP, a cost function is defined in terms of a weighted sum of length and mean curvature of the



Figure 17: Editing menu for a command cell

Figure 18: The parameter mask for a MOVE command

planned path; in this way the shortest and smoothest paths are favoured. The students implement
their own path planning algorithm in a similar fashion as that of the algorithm providers described
in the NHMP section, and are able to compare the performance of their implemented solution with
that of the existing algorithms and of their fellow students over a set of pre-defined problems. In
the GeT experiment, the standard exercise is that of a pick-and-place task in presence of set-up
generated disturbances; the planner has availability of a quantized feedback information from the
sensorized platform previously described. The students have to design through the GeT interface
a program able to execute the task. The figure of merit of each proposed solution is given by a
weighted sum of the number of instructions (building blocks of the language) and the number of
elementary operations in the manoeuvre execution. The rationale underlying the choices of the
figures of merit is the following: in the NMHP case, it is evaluated the performance of the planning
solution, irrespectively of the algorithm complexity and of execution time; on the contrary, the
GeT programming evaluation focuses on the computational efficiency of the proposed solution.

A fundamental component of a learning object, whose presence is critical for continuous improve-
ments of the overall system and/or of some of its specific components, is a procedure for training
evaluation. Assuming that most of the participants in the web-based courses will be university
students, the training evaluation is performed accordingly to the first two levels of the Kirkpatrick
model:16 evaluation of reaction and learning. An experimental follow-up procedure for the stu-



Figure 19: The simulation window of GeT

Figure 20: The sensorized platform of GeT

dents enrolling in the e-course for professional update to evaluate the learning transfer (the third
level of the model) is also in preparation. At the reaction level, the student perception of the
learning object is assessed; this is accomplished through a questionnaire in which each student has
to indicate her/his subjective evaluation (on a one-to-five scale) regarding difficulties of learning;
completeness of the instructional material; difficulties in access and use of the experimental set-up;
availability of the experimental set-up; efficacy of the telepresence feedback (in all of our cases, of
the videoconferencing system). As for learning evaluation, the results obtained by the students in



Figure 21: Disposition of the binary sensors of Get platform

the final e-learning course examinations are considered, and histograms are built from the results.
The transfer evaluation will consist in a six-months follow-up of those students that have enrolled
in the course not as part of their university program, but for professional update. After six months
from the end of the course, they will be required to fill a questionnaire in which they have to give
a quantitative evaluation (on a one-to-five scale) of: change in job mansions after the course; use
of the new knowledge gathered in the course; interaction in the working environment with topics
addressed in the course; how much of the topics learned in the course are still maintained. At
the present stage, the implementation of a protocol for the evaluation of the fourth level of the
Kirkpatrick model (impact and cost/benefit) is considered premature.

6 Conclusions and future developments

In this paper we have described several WWW installations intended for support to teaching
elementary robotics courses. The DC motor and Levitator installations are rather simple but
(probably because of such simplicity) very effective and robust. The Non Holonomic Motion Planner
is adopted as a benchmark for path planning algorithms for non–holonomic vehicles. In the future,
our aim is to share NHMP with other Labs, in the sense that it may be used as path–planner by
several online non–holonomic plants.

The robot programming installation GeT represents an ambitious project, that has two ultimate
objectives: one goal, more research-oriented, is the development of an intuitive, GUI-supported,
object–oriented multitarget robot programming language for distributed programming. To this
end, much work remains to be done, and our planned next steps involve increasing the number of
target devices to which GeT programs can be downloaded, and to incorporate new sensors (such as
force/torque sensors) and/or actuators in the system. The second goal, e-learning oriented, is to
provide students with the basic capabilities in task planning experimentation.

All the set-ups presented are being complemented with tools for e-learning support, with the
final aim of making our lab one of the nodes of a network of virtual laboratories. This network may
eventually provide students with wider possibilities and experiences in the field of mechatronics.
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